Fox, Michael G.

Animal-mediated elemental cycling across time, space, and animal functional traits

Type:
Names:
Creator (cre): Klemet-N'Guessan, Sandra, Thesis advisor (ths): Xenopoulos, Marguerite A., Degree committee member (dgc): Paterson, Michael J., Degree committee member (dgc): Fox, Michael G., Degree granting institution (dgg): Trent University
Abstract:

Animals are essential to freshwater biogeochemistry and productivity. Through their excretion, aquatic consumers release bioavailable nutrients and carbon that can vary with animal taxonomic rank, trophic position, and abiotic factors such as light and nutrient supply. In fresh waters, light and nutrient supply is often modulated by dissolved organic matter (DOM), a "murky" component in the water that gives it a brown color and that may indirectly affect animal nutrient and carbon excretion. Additionally, contaminants can impact animal physiology, altering metabolism and inducing stress, further affecting nutrient and contaminant excretion. The size and structure of the ecosystem, including community composition and biomass, can also impact the contribution of aquatic animals to the elemental pool. To understand these dynamics, I examined animalā€mediated elemental cycling in freshwater ecosystems across gradients of DOM concentration and composition and under contaminant exposure. I tested fish and invertebrate nitrogen, phosphorus, and DOM excretion across trophic positions during two sampling events in Lake Erie and in naturally DOM-variable streams and lakes. I also investigated the effects of chronic exposure to silver nanoparticles (AgNP) under environmentally relevant conditions on fish nutrient and silver (Ag) release. I found that aquatic animals can be a substantial nutrient contributor to the nutrient pool, particularly when their population biomass is high and ambient nutrient concentrations are low. I also detected nonlinear relationships between animal nutrient excretion and DOM characteristics that varied with taxonomic rank and trophic position and that dampened at larger ecological scales. Importantly, I identified several fish DOM excretion signatures that differed relative to ambient DOM and reported the first fish Ag excretion rates under AgNPs exposure. My results underscore the context-dependency and variability inherent in animal-mediated elemental cycling, highlighting the critical role of animals as both modifiers and conduits of nutrients, DOM, and contaminants in aquatic ecosystems.

Author Keywords: carbon, consumer-nutrient driven dynamics, ecological stoichiometry, nitrogen, phosphorus, silver nanoparticles

2024

Seasonal habitat use and movement of native brook trout (Salvelinus fontinalis) in urban headwater streams

Type:
Names:
Creator (cre): Blair, Scott, Thesis advisor (ths): Fox, Michael G., Degree committee member (dgc): Gutowsky, Lee F.G., Degree committee member (dgc): Beresford, David V., Degree granting institution (dgg): Trent University
Abstract:

Coldwater streams are becoming increasingly impacted due to urbanization. Using environmental surveys, mark-recapture and telemetry, I assessed factors influencing seasonal brook trout (Salvelinus fontinalis) habitat use and movement in urban headwater streams in central Ontario between 2017-18. Generalized additive models were used to assess which habitat variables best explained seasonal yearling and older brook trout abundance, while generalized least squares models were used to assess overall trends in radio-tagged brook trout movement. My research demonstrated dynamic patterns in habitat use and movement by urban stream-dwelling brook trout. Yearlings were primarily influenced by water quality (stream temperature, conductivity), while older brook trout were most strongly influenced by stream morphology (depth, undercut bank). Movement occurred disproportionately around the spawning season and was more limited in the smaller, more altered stream. These findings may be used to inform fisheries managers on crucial timing and location of brook trout habitat refugia within urbanized environments.

Author Keywords: Brook trout, coldwater stream, groundwater, habitat use, radiotelemetry, urbanization

2019