Winters, Cameron
Bioremoval of copper and nickel on living and non-living Eugelna gracilis
This study assesses the ability of a unicellular protist, Euglena gracilis, to remove Cu and Ni from solution in mono- and bi-metallic systems. Living Euglena cells and non-living Euglena biomass were examined for their capacity to sorb metal ions. Adsorption isotherms were used in batch systems to describe the kinetic and equilibrium characteristics of metal removal. In living systems results indicate that the sorption reaction occurs quickly (<30 min) in both Cu (II) and Ni (II) mono-metallic systems and adsorption follows a pseudo-second order kinetics model for both metals. Sorption capacity and intensity was greater for Cu than Ni (p < 0.05) and were described by the Freundlich model. In bi-metallic systems sorption of both metals appears equivalent. In non-living systems sorption occurred quickly (10-30 min) and both Cu and Ni equilibrium uptake increased with a concurrent increase of initial metal concentrations. The pseudo-first-order model was applied to the kinetic data and the Langmuir and Freundlich models effectively described single-metal systems. The biosorption capacity of Cu (II) and) was 3x times greater than that of Ni (II). Sorption of one metal in the presence of relatively high concentrations of the other metal was supressed. Generally, it was found that living Euglena remove Cu and Ni more efficiently than non-living Euglena biomass in both mono- and bi-metallic systems. It is anticipated that this work should contribute to the identification of baseline uptake parameters and capacities for Cu and Ni by Euglena as well as to the increasing amount of research investigating sustainable bioremediation.
Author Keywords: accumulation, biosorption, Cu, Euglena gracilis, kinetics, Ni