Dillon, Peter J

Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield

Type:
Names:
Creator (cre): Baker, Scott Robert, Thesis advisor (ths): Watmough, Shaun A, Thesis advisor (ths): Eimers, Catherine M, Degree committee member (dgc): Dillon, Peter J, Degree granting institution (dgg): Trent University
Abstract:

Catchment soil acidification has been suggested as a possible mechanism for reducing phosphorus (P) loading to surface waters in North America and northern Europe, but much of the research that has been conducted regarding P immobilization in pH manipulated soils has been performed at high P concentrations (> 130 μM). This study investigated how soil acidity was related to P fractionation and P sorption at environmentally relevant P concentrations to evaluate the potential influence of long term changes in soil pH on P release to surface waters. Total phosphorus (TP) concentrations declined between 1980 and 2000 in many lakes and streams in central Ontario; over the same time period forest soils in this region became more acidic. Soils were collected from 18 soil pits at three forested catchments with similar bedrock geology but varying TP export loads. The soil pH at the 18 study soil pits spanned the historic soil pH range, allowing for `space for time' comparison of soil P factions. Soils were analysed by horizon for P fractions via Hedley P fractionation. Batch P sorption experiments were performed on selected B-horizon soils at varied solution pH. Soil P fractions varied by horizon but were comparable among the three catchments, with only apatite (PHCl) differing significantly across catchments. Contrary to expectation, both soluble and labile P showed negative relationships with pH in some horizons. Mineral soils were able to sorb almost all (> 90 %) of the P in solution at environmentally relevant P concentrations (4.5 - 45.2 μM). Phosphorus sorption at environmentally relevant P concentrations was unrelated to solution pH but at high P concentration there was a positive relationship between P sorption and solution pH, suggesting a P concentration dependant P sorption mechanism. Phosphorus budgets indicate that P is accumulating within catchments, suggesting that P is being immobilized in the terrestrial environment. An alternative hypothesis, which attempts to explain both the decline in stream TP export and terrestrial P accumulation, is discussed. The results from this study suggest that acidification induced P sorption in upland soils are not a contributing factor to decreases in stream TP concentration in the study catchments.

Author Keywords: central Ontario, Hedley fractionation, phosphorus, podzols, soil acidification, sorption

2014

Variation in the &#948;<super>15</super>N and &#948;<super>13</super>C composition of POM in the Lake Simcoe watershed

Type:
Names:
Creator (cre): Baranowska, Kamila Anna, Thesis advisor (ths): Dillon, Peter J, Degree committee member (dgc): Winter, Jennifer G, Degree committee member (dgc): Molot, Lewis A, Degree granting institution (dgg): Trent University
Abstract:

The purpose of this study was to quantify the variation of baseline carbon and nitrogen stable isotope signatures in the Lake Simcoe watershed and relate that variation to various physicochemical parameters. Particulate organic matter samples from 2009 and 2011 were used as representatives of baseline isotopic values. Temporal data from two offshore lake stations revealed that δ15N of POM was lowest mid-summer and highest after the fall turnover. POM δ13C was variable throughout the summer before declining after fall turnover. Spatial data from the lake and the tributaries revealed that POM stable isotope signatures were highly variable. Various physicochemical parameters indicative of phytoplankton biomass were significantly positively correlated with POM δ15N and significantly negatively correlated with POM δ13C. The correlations were mostly significant in the tributaries, not the lake. Moreover, many of the correlations involving δ15N of POM were driven by extreme values in Cook's Bay and its tributaries. In general, it's likely that different processes or combination of processes were affecting the δ15N and δ13C POM in the Lake Simcoe watershed as physicochemical parameters alone could not explain the variability. Measuring the δ15N of ammonium and nitrate, as well as the δ13C of DIC would help discern the dominant nitrogen and inorganic carbon cycling processes occurring in the Lake Simcoe watershed.

Author Keywords: δ13C, δ15N, isotopic baseline, particulate organic matter, spatial variation, stable isotopes

2015

A regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario

Type:
Names:
Creator (cre): Burke, Samantha Marie, Thesis advisor (ths): Dillon, Peter J, Degree committee member (dgc): Persaud, Anurani D, Degree committee member (dgc): Molot, Lewis A, Degree granting institution (dgg): Trent University
Abstract:

Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities.

Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands

2014

Impact of Wetland Disturbance on Phosphorus Loadings to Lakes

Type:
Names:
Creator (cre): Pinder, Kieran Chris, Thesis advisor (ths): Eimers, M. C, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Dillon, Peter J, Degree granting institution (dgg): Trent University
Abstract:

Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region.

Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland

2015