Emery, Neil RJ
The effect of cytokinins on the metabolite secretome of Giardia intestinalis during trophozoite growth, nutrient deprivation, and encystation
Giardia intestinalis is the causative agent of a diarrheal disease in mammals, but the mechanisms of disease pathogenesis are unclear. While proteins secreted by Giardia affect the host cells, the potential of hormone secretion has not been investigated to date. Cytokinins (CKs) are classified as phytohormones, but little is known about their role beyond plants. Mass spectrometry-based intracellular analysis revealed CKs typical of tRNA degradation, and extracellular analysis showed CK-riboside scavenging by Giardia with concurrent secretion of CK-free bases. Metabolomics profiling of culture supernatants showed similar trends where nucleosides were up taken, and nucleobases were secreted. The dynamics of amino acids, nucleosides and nucleobases were altered by CK-supplementation during encystation, along with inhibition of encystation. In summary, this is the first study to report CK synthesis and metabolism by Giardia along with the effects of CKs on the metabolite secretome of Giardia, while establishing a link between CK and nucleoside metabolism.
Author Keywords: Cytokinins, Giardia, mass spectrometry, metabolomics, parasite, secretome
The Cytokinin Oxidase/Dehydrogenase (CKX) Gene Family in Soybeans (Glycine max): Phylogenetic Analysis, Protein Properties and Investigation of Natural Variations among Varieties.
Glycine max (soybean) is an economically important plant species that registers a relatively low yield/seed weight compared to other food and oil seed crops due to higher rates of flower and pod abortion. Alleviation of this abortion rate can be achieved by altering the sink strength of the reproductive organs of soybeans. Cytokinin (CK) plays a fundamental role in promoting growth of sink organ (flowers and seeds) by increasing the assimilate demand. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that catalyses the irreversible breakdown of active CKs and hence reduce the cytokinin content. The current thesis uncovers the members of CKX gene family in soybeans and the natural variations among CKX genes within soybean varieties with different yield characteristics. The identification of null variants of OsCKX2 that resulted in large yield increases by Ashikari et al. (2005) provided a rationale for current thesis. The soybean CKX genes along with the ones from Arabidopsis, Rice and Maize were used to construct a phylogenetic tree. Using comparative phylogeny, protein properties and bioinformatic programs, the potential effect of the identified natural variations on soybean yield was predicted. Five genes among the seventeen soybean CKXs identified, showed polymorphisms. One of the natural variations, A159G, in the gene GmCKX16 occurred close to the active site of the protein and was predicted to affect the activity of enzyme leading to higher accumulation of CKs and hence increased seed weight. Use of such natural variations in marker assisted breeding could lead to the development of higher yielding soybean varieties.
Author Keywords: CKX, Cytokinins, Seed weight, Seed Yield, SNPs, Soybeans