Srithayakumar, Vythegi
Immunogenetic Responses of Raccoons and Skunks to the Raccoon Rabies Virus
Interactions between hosts and pathogens play a crucial role in their adaptation, evolution and persistence. These interactions have been extensively studied in model organisms, yet it is unclear how well they represent mechanisms of disease response in primary vectors in natural settings. The objective of my thesis was to investigate host-pathogen interactions in natural host populations exposed to raccoon rabies virus (RRV). RRV is endemic to North America, that causes acute encephalopathies in mammals and is commonly regarded as 100% lethal if untreated; however variable immune responses have been noted in natural reservoirs. In order to further understand variable immune responses to RRV, my thesis examined (i) potential immunogenetic associations to RRV using genes intimately associated with an immune response, (ii) the nature of immune responses triggered in the host after infection, and (iii) viral expression and genetic variation, to provide insight into factors that may influence RRV virulence.
Immunogenetic variation of RRV vectors was assessed using major histocompatibility complex (MHC) DRB alleles. Associations were found between specific MHC alleles, RRV status, and viral lineages. Further, similarities at functionally relevant polymorphic sites in divergent RRV vector species, raccoons and skunks, suggested that both species recognize and bind a similar suite of peptides, highlighting the adaptive significance of MHC and contemporary selective pressures.
To understand mechanisms of disease spread and pathogenesis, I screened for variation and expression of genes indicative of innate immune response and patterns of viral gene expression. RRV activated components of the innate immune system, with transcript levels correlated with the presence of RRV. These data indicate that timing of the immune response is crucial in pathogenesis. Expression patterns of viral genes suggest they are tightly controlled until reaching the central nervous system (CNS), where replication increases significantly. These results suggest previous molecular mechanisms for rabies host response derived from mouse models do not strictly apply to natural vector populations. Overall my research provides a better understanding of the immunological factors that contribute to the pathogenesis of RRV in a natural system.
Author Keywords: immune response, major histocompatibility complex, rabies, raccoons, skunks, virus