Donaldson, Micheal

Insights from Dictyostelium: Examining the role of cellular stress in Batten disease

Type:
Names:
Creator (cre): Thanabalasingam, Aruban, Thesis advisor (ths): Huber, Robert J, Degree committee member (dgc): Yee, Janet, Degree committee member (dgc): Donaldson, Micheal, Degree granting institution (dgg): Trent University
Abstract:

The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, are a family of fatal neurodegenerative disorders that primarily affect children. Several subtypes of NCLs have been reported, each being caused by a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene; this results in aberrant lysosome function and the accumulation of lipoprotein aggregates (known as ceroid lipofuscin) within cells. Several innate cellular pathways exist to alleviate the stress caused by the buildup of aggregates. The endoplasmic reticulum (ER) is an essential organelle in this process because it is responsible for maintaining cellular homeostasis through protein production, quality control, and regulating several signalling pathways. The unfolded protein response (UPR) consists of several conserved pathways devoted to attenuating ER stress caused by an accumulation of misfolded proteins or aggregates; at the center of this stress response is GRP78, a molecular chaperone that binds to misfolded proteins to facilitate proper folding. The social amoeba Dictyostelium discoideum is an excellent model system for studying NCLs as it encodes more CLN-like proteins when compared to other classical model organisms (e.g., yeast, worm, fruit fly). In this study, D. discoideum was used to elucidate the effects of ER stress and build an understanding of how cells cope with increased stress. Beyond this, ER stress in D. discoideum models for CLN3 disease and CLN5 disease were evaluated. First and foremost, during the induction of ER stress by tunicamycin, there was an increase in intracellular and extracellular amounts of Grp78 accompanied by an increase in stress-related changes to the ER. Furthermore, models of CLN3 disease and CLN5 disease displayed increased amounts of Grp78 as well as a disrupted ER morphology. Interestingly, wildtype D. discoideum, AX3 cells, treated with tunicamycin displayed a similarly disrupted ER when compared to CLN models. Finally, when subjected to tunicamycin-induced ER stress, these NCL models displayed a trend towards increased Grp78 amounts, however, these cells appear to have a reduced sensitivity to tunicamycin-induced stress compared to wild-type cells. In summary, this study highlights D. discoideum as a model for studying ER stress through the conserved role of Grp78 in the stress response and concludes that an aberrant ER stress underlies the pathology of the NCLs.

Author Keywords: Batten disease, Dictyostelium discoideum, ER stress, GRP78, neuronal ceroid lipofuscinoses (NCLs)

2024