Rapid Assays to Test for Flavohemoglobin Inhibitors

Abstract

Giardia intestinalis is a parasitic protozoan that possesses a flavohemoglobin (gFlHb), an enzyme that plays a role in the detoxification of reactive nitrogen species (RNS) and reactive oxygen species (ROS) via its nitric oxide dioxygenase (NOD) activity as well as its NADH-oxidase activity. This enzyme is a potential target for imidazole-based antigiardial drugs that act as ligands of the iron within its heme cofactor. In this work, two rapid and relatively inexpensive assays, the colorimetric Griess assay and a fluorescence assay, were adapted, optimized, and implemented to screen for flavohemoglobin inhibitors in parallel studies that compared the response of gFlHb to that of Hmp (Escherichia coli flavohemoglobin) when a group of six different imidazole-based compounds was tested. These assays displayed isotype selectivity, showing how the different drugs elicited different responses from the two enzymes. Comparative results for gFlHb and Hmp revealed that bulkier compounds elicited higher inhibition of Hmp, while smaller compounds resulted in better inhibition of gFlHb, which might be explained by the presence of different amino acid residues in the active sites of the enzymes, with two large amino acid sequence inserts being a unique feature of gFlHb, thus blocking the active site from being reached and blocked by larger compounds.

Author Keywords: 2.3-diaminonaphthalene, Flavohemoglobin, Giardia intestinalis, Griess Assay, imidazole-based drugs, nitric oxide detoxification

    Item Description
    Type
    Contributors
    Creator (cre): Henao, Elias
    Thesis advisor (ths): Rafferty, Steven
    Degree committee member (dgc): Brunetti, Craig
    Degree committee member (dgc): Martic, Sanela
    Degree granting institution (dgg): Trent University
    Date Issued
    2024
    Date (Unspecified)
    2024
    Place Published
    Peterborough, ON
    Language
    Extent
    83 pages
    Rights
    Copyright is held by the author, with all rights reserved, unless otherwise noted.
    Local Identifier
    TC-OPET-11205
    Publisher
    Trent University
    Degree
    Master of Science (M.Sc.): Environmental and Life Sciences