Chemistry

Advancements and Challenges in Ciguatoxin Detection: Developing a High- Resolution Mass Spectrometric Method for the Identification of P-CTX-3B

Type:
Names:
Creator (cre): Prytulka, Natasha Grace, Thesis advisor (ths): Hintelmann, Holger, Thesis advisor (ths): Stock, Naomi, Degree committee member (dgc): Metcalfe, Chris, Degree granting institution (dgg): Trent University
Abstract:

The detection of ciguatoxins (CTXs) in biological samples is challenging due to their low concentrations, the presence of various congeners, and the absence of standardized methods. This study uses high resolution mass spectrometry (HRMS) with P-CTX-3B as a reference standard. The protonated molecules ([M+H]+) were most prevalent, especially when acetonitrile/water was utilized, providing enhanced sensitivity. Optimized collision energies of 15 eV for protonated molecules and flow rates of 10 µl/min enhance sensitivity and peak intensities, respectively. Acetonitrile/water (ACN/H2O) is recommended as the primary solvent for HRMS method, an aspect underexplored in existing literature. The detection of CTX-3B in fish tissue samples proved to be challenging, caused by variations in ion peak intensities and matrix effects, requiring a deeper exploration of the impact of complex matrices on CTX detection. The study emphasizes the need for a reliable internal standard to mitigate these effects and highlights the ongoing challenge of developing a rapid, simple, and sensitive detection method. The study's specific focus on the P-CTX-3B analogue significantly contributes to methodology development for this congener, serving as a foundational step in understanding and detecting CTX. Despite notable progress, the study acknowledges the absence of an ideal assay, outlining key challenges for future research on ciguatera analysis. It underscores the continuous necessity for method reevaluation, testing, and the broader goal of establishing a more clarified and rugged method for the identification of CTX in fish.

Author Keywords: Analytical Chemistry, Ciguatera Fish Poisoning, Ciguatoxin, High-Resolution Mass Spectrometry, Optimization, P-CTX-3B

2024

Rapid Assays to Test for Flavohemoglobin Inhibitors

Type:
Names:
Creator (cre): Henao, Elias, Thesis advisor (ths): Rafferty, Steven, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Martic, Sanela, Degree granting institution (dgg): Trent University
Abstract:

Giardia intestinalis is a parasitic protozoan that possesses a flavohemoglobin (gFlHb), an enzyme that plays a role in the detoxification of reactive nitrogen species (RNS) and reactive oxygen species (ROS) via its nitric oxide dioxygenase (NOD) activity as well as its NADH-oxidase activity. This enzyme is a potential target for imidazole-based antigiardial drugs that act as ligands of the iron within its heme cofactor. In this work, two rapid and relatively inexpensive assays, the colorimetric Griess assay and a fluorescence assay, were adapted, optimized, and implemented to screen for flavohemoglobin inhibitors in parallel studies that compared the response of gFlHb to that of Hmp (Escherichia coli flavohemoglobin) when a group of six different imidazole-based compounds was tested. These assays displayed isotype selectivity, showing how the different drugs elicited different responses from the two enzymes. Comparative results for gFlHb and Hmp revealed that bulkier compounds elicited higher inhibition of Hmp, while smaller compounds resulted in better inhibition of gFlHb, which might be explained by the presence of different amino acid residues in the active sites of the enzymes, with two large amino acid sequence inserts being a unique feature of gFlHb, thus blocking the active site from being reached and blocked by larger compounds.

Author Keywords: 2.3-diaminonaphthalene, Flavohemoglobin, Giardia intestinalis, Griess Assay, imidazole-based drugs, nitric oxide detoxification

2024

The Investigation of Heavy Metal Adsorption on Modified Activated Carbon Materials

Type:
Names:
Creator (cre): Fisher, Kyle S., Thesis advisor (ths): Vreugdenhil, Andrew, Degree committee member (dgc): Slepkov, Aaron, Degree committee member (dgc): Gaspari, Franco, Degree committee member (dgc): Ponnurangam, Sathish, Degree granting institution (dgg): Trent University
Abstract:

This thesis describes the preparation, optimization, functionalization, and characterization of activated carbon materials sourced from a petroleum coke feedstock for the tailored removal of heavy metal species in contaminated waters. The goal of this work is to develop an understanding of the mechanisms that drive adsorption of heavy metals onto activated carbon surfaces. By determining the mechanisms that drive adsorption, activated carbon materials can be modified to increase the efficiency of the adsorption process. The novelty of this work comes from the use, modification, and functionalization of activated carbon derived from petroleum coke, a waste by-product of the oil-sands extraction process, a source not prevalent in current literature. The novelty also comes from the determination of the methods by which heavy metals are adsorbed onto the given adsorbate as literature does not focus on the mechanisms themselves. The work presented sheds light on the specific adsorption mechanisms, with the aim of elucidating how a given material's surface can be enhanced to target a specific analyte. This work focused on the use of microwave plasma atomic emission spectroscopy (MP-AES), x-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller theory (BET) to obtain the necessary data required for the determination of adsorption mechanisms, adsorption capacities, and surface characterization of the materials. MP-AES is used for the determination of the adsorption capacity of the materials produced. Surface characterization of the materials was done using XPS, and surface area and pore size distributions were determined using BET for surface area determination and nitrogen adsorption measurements following density functional theory for pore size distribution determination. XPS of the activated carbon post-chromium and post-arsenic adsorption show a reduction of the metals from chromium (VI) to chromium (III) and from arsenic (V) to arsenic (III). By increasing the amount of hydroxyl functional groups on the AC surface through a simple thermal-treatment, the chromium adsorption was increased from 17.0 mg/g to 22.4 mg/g. By loading a reducing agent onto the activated carbon surface, an increased number of potential binding sites for the arsenic are loaded onto the AC surface and the adsorption of arsenic increased from 8.1% to 51%.

Author Keywords: Activated Carbon, Adsorption, Adsorption Mechanisms, Arsenic, Chromium, Petroleum Coke

2024

Palladium N-Heterocyclic Carbene Complexes in Cross-Coupling Reactions: Ligand and Catalyst Development

Type:
Names:
Creator (cre): Brick, Kasandra Julie Anne, Thesis advisor (ths): Keske, Eric C, Degree committee member (dgc): Maly, Kenneth, Degree committee member (dgc): Zenkina, Olena, Degree committee member (dgc): Vreugdenhil, Andrew, Degree granting institution (dgg): Trent University
Abstract:

The synthesis of biaryls through transition metal catalyzed cross-coupling reactions has been instrumental for synthetic organic chemists. The Hiyama reaction, which features organosilicon derived cross-coupling partners with aryl chlorides, remains relatively underdeveloped compared to other cross-coupling reactions. In this thesis, it is demonstrated that bench stable Palladium N-Heterocyclic Carbene (NHC) precatalysts of the general type [(NHC)Pd(allyl)Cl] are highly active in the Hiyama cross-coupling of activated aryl chlorides with low catalyst loading. Notably, this research demonstrates that catalysts featuring sterically less demanding NHCs display higher activity in this reaction, which contrasts with other cross-coupling reactions. Preliminary mechanistic investigations including in situ reaction monitoring by 19F NMR spectroscopy have uncovered side reactions. These side reactions may explain the low catalytic performance observed with unactivated substrates. These studies could help to further develop this reaction and improve catalytic performance. Additional investigations have also been made into ligand development by altering the electronics of sterically hindered NHC ligands for use in other cross-coupling reactions.

Author Keywords: Catalysis, Cross-coupling, Organic Chemistry, Organometallics, Side Reactions, Synthesis

2024

Molecular Architectures for Improved Biomaterials Derived from Vegetable Oils – Application to Energy Storage and Lubricants

Type:
Names:
Creator (cre): Soodoo, Navindra, Thesis advisor (ths): Narine, Suresh SN, Degree committee member (dgc): Vreugdenhil, Andrew AV, Degree committee member (dgc): Hill, Stephen SH, Degree granting institution (dgg): Trent University
Abstract:

The replacement of petroleum with renewable feedstock for energy and materials has become a priority because of concerns over the environment and finite nature of petroleum. The structures of the available natural biomass feedstocks fall short in delivering key functionality required in materials such as lubricants and phase change energy storage materials (PCMs). The approach taken in this thesis was to combine select functional groups with vegetable oil derivatives to create novel PCMs and lubricantswhich deliver desired functionality. One series of diester PCMs were prepared with terephthalic acid and fatty alcohols to address known shortcomings of esters. The second class of PCMs are sulfones prepared from oxidation of fatty sulfides to improve thermal energy storage. Overall, the new PCMs presented narrow phase change temperature ranges, high transition temperature (between 67 to 110℃), high transition enthalpy (210 to 266J/g), minimal supercooling and congruent phase transitions unaffected by cooling rates. They also demonstrated higher thermal degradation stability with onset of degradation from 290 to 310℃. The series of lubricants studied consists of sulfide and sulfonyl functional groups attached to the unsaturation sites of oleyl oleate as pendant groups to improve the thermal and flow properties. The new lubricants present subzero crystallization temperatures, very low crystallization enthalpy and dynamic viscosity as high as 180mPas.

Furthermore, they also presented high onset of degradation (up to 322℃) and oxidation (up to 298℃). The PCMs and lubricants of the present thesis demonstrate that select functional groups can be used with common structural elements of vegetable oil such as fatty acids, ester groups and unsaturation sites to make a variety of molecular structures capable of delivering desired properties

Author Keywords: Crystal Structure, Lubricant, Phase Change Material, Renewable, Structure-Property Relationships, Vegetable Oil

2022

Electrochemical versus Chemical Oxidation of Bulky Phenols: 2,6-diphenylphenol and 2,2-dihydroxybiphenol

Type:
Names:
Creator (cre): Gao, Stephanie, Thesis advisor (ths): Martic, Sanela, Degree committee member (dgc): Shetranjiwalla-Merchant, Shegufta, Degree committee member (dgc): Stock, Naomi, Degree granting institution (dgg): Trent University
Abstract:

Phenolic compounds are used in industry, such as agriculture and biotechnology, and inevitably end up in our environment. These compounds may serve as a phenolic precursor to produce raw materials for a wide range of applications. Chemical oxidation has been the common synthetic pathway to oxidize phenols and related compounds. However, traditional chemical approaches suffer from use of harsh chemicals, waste generation, and lack of reaction selectivity. Electrochemical synthesis has emerged as an alternative method to mitigate common challenges associated with organic synthesis. Herein, electrochemical oxidation of 2,6-diphenylphenol (DPP) and 2,2-dihydroxybiphenol (DHBP) was carried out and compared to traditional chemical oxidation. Contrasted with chemical oxidation, cyclic voltammetry of DPP resulted in a range of products based on the specific potential ranges used, whereas chemical oxidation of DHBP yield a dark-coloured polymeric product. The electrooxidation and chemical oxidation of DPP and DHBP resulted in a solution colour change, indicative of the formation of new, but different products monitored by UV-vis, and characterized by nuclear magnetic spectroscopy (NMR), X-ray single crystal diffraction, IR spectroscopy, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS). The data indicate that the synthetic outcomes are dependent on the synthetic methodology employed, and that electrooxidation and chemical oxidation can form products unique to the pathway utilized.

Author Keywords: chemoselectivity, electrochemistry, phenols, radical, synthesis

2023

Temporal Variability of Coloured Dissolved Organic Matter in the Canada Basin, Arctic Ocean (2007-2017)

Type:
Names:
Creator (cre): DeFrancesco, Cassandra, Thesis advisor (ths): Gueguen, Celine, Degree committee member (dgc): Franklin, Steven, Degree committee member (dgc): Hickie, Brendan, Degree granting institution (dgg): Trent University
Abstract:

This thesis investigated coloured and fluorescent dissolved organic matter in the Canada Basin, Arctic Ocean from 2007 to 2017. The first interannual time-series of its kind in the Canada Basin incorporated the use of EEM-PARAFAC to validate a seven-component model. Statistical temporal tests revealed (1) an increasing protein-like intensity in the upper polar mixed layer (UPML); (2) increasing intensities of humic-like components in the halocline due to increasing freshwater content; and (3) no change in DOM composition in deeper Atlantic waters (AW) congruent with the long residence time of the water mass (> 30 years). The significant decline in sea ice concentration was related to a decrease in humic-like FDOM due to enhanced photodegradation and an increase in protein-like FDOM, likely the results of increased biological activities in surface layers. This research provides evidence that the changes in physical and biological environment in the Arctic regions have already profound impacts on the composition and distribution of FDOM.

Author Keywords: absorbance, Arctic Ocean, dissolved organic matter, fluorescence, parallel factor analysis, time-series

2020

Novel Aliphatic Lipid-Based Diesters for use in Lubricant Formulations: Structure Property Investigations

Type:
Names:
Creator (cre): Raghunanan, Latchmi Cindy, Thesis advisor (ths): NARINE, SURESH S, Degree committee member (dgc): Vreugdenhil, Andrew, Degree committee member (dgc): Desaulniers, Jean-Paul, Degree granting institution (dgg): Trent University
Abstract:

Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects.

Author Keywords: Crystallization, Phase behaviour, Rheology, Structure-Function, Thermogravimetric analysis, Vegetable Oils

2016

Automated Separation and Preconcentration of Ultra-Trace Levels of Radionuclides in Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Type:
Names:
Creator (cre): Wang, Wei, Thesis advisor (ths): Evans, R. Douglas, Degree committee member (dgc): Newman, Karla, Degree committee member (dgc): Larivière, Dominic, Degree granting institution (dgg): Trent University
Abstract:

Radionuclides occur in the environment both naturally and artificially. Along with weapons testing and nuclear reactor operations, activities such as mining, fuel fabrication and fuel reprocessing are also major contributors to nuclear waste in the environment. In terms of nuclear safety, the concentration of radionuclides in nuclear waste must be monitored and reported before storage and/or discharge. Similarly, radionuclide waste from mining activities also contains radionuclides that need to be monitored. In addition, a knowledge of ongoing radionuclide concentrations is often required under certain 'special' conditions, for example in the area surrounding nuclear and mining operations, or when nuclear and other accidents occur. Thus, there is a huge demand for new methods that are suitable for continuously monitoring and rapidly analyzing radionuclide levels, especially in emergency situations. In this study, new automated analytical methods were successfully developed to measure ultra trace levels of single or multiple radionuclides in various environmental samples with the goal of faster analysis times and less analyst involvement while achieving detection limits suitable for typical environmental concentrations.

Author Keywords: automation, ICP-MS, ion exchange, radionuclide

2020

Extraction and Characterization of Hyaluronic Acid and Collagen from Eggshell Membrane Waste: An Industrial Recycling Process

Type:
Names:
Creator (cre): Stabler Ogawa, Jayme Larissa, Thesis advisor (ths): Vreugdenhil, Andrew J, Degree committee member (dgc): Wortis, Rachel, Degree committee member (dgc): Rizvi, Ghaus, Degree granting institution (dgg): Trent University
Abstract:

Connecting academia to industry is one important way to advance towards meeting the United Nations (UN) Sustainability Goals (SDGs).1 Sustainability can be applied to all industrial sectors with the SDGs being implemented by 2030.2 This research contributes to the SDGs by investigating a way to remediate an industrial waste stream in the egg-breaking industry. If adopted, this would reduce the amount of eggshell membrane (ESM) waste placed in landfill where it does not decompose properly. The work described in this thesis specifically targets extraction of collagen and hyaluronic acid (HA), two components of the ESM that are of commercial value in the cosmetic, pharmaceutical, and biomedical industries3,4 . Deliverables from this research include economically viable extraction methods, developed based on green chemistry approaches, that can be transferred from lab bench to industrial scale. The extraction development process was guided by the 12 Principles of Green Chemistry5,6,7 and the 12 Principles of Green Engineering.8 HA was most successfully extracted using a sodium acetate solution on ground ESM. Filtrate was collected, exhaustively dialyzed and lyophilized. High molecular weight HA was recovered. Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and proton nuclear magnetic resonance (NMR) spectroscopy compared extracted material to reference HA identifying successful extraction. Collagen was extracted using acetic acid or pepsin enzyme digestion. Hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (MS) compared amino acid composition of extracted materials to reference collagen material. FTIR-ATR spectra also supported successful extraction of collagen. This work identifies that HA and collagen can be conveniently extracted from ESM using an economical approach that can be implemented into egg-breaking facilities. This work highlights the benefits of connecting academia to industry to advance green chemical approaches while implementing sustainable practices into existing industry.

Author Keywords: collagen, eggshell membrane waste, extraction, green chemistry, hyaluronic acid, sustainability

2021