Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates.
Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology