Evolution & development

Differences and similarities in exploration and risk-taking behaviours of two Myotis bat species.

Type:
Names:
Creator (cre): Scott, Laura Michele, Thesis advisor (ths): Bowman, Jeff, Thesis advisor (ths): Davy, Christina, Degree committee member (dgc): Northrup, Joseph, Degree granting institution (dgg): Trent University
Abstract:

AbstractDifferences and similarities in exploration and risk-taking behaviours of two Myotis bat species. Laura Michele Scott Behaviours that are repeatable across circumstances and time determine an individual's personality. Personality and behavioural variation are subject to selective pressures, including risks related to the use of different habitat types. I explored the ecological and evolutionary consequences of habitat selection by comparing the behaviour of two sympatric bat species, Myotis leibii and M. lucifugus. These species display overlap in roosting preferences, however, M. leibii tend to roost in crevices on the ground, while M. lucifugus tend to roost in crevices or cavities that are raised off the ground. I hypothesized that the habitat selection patterns of these two species create behavioural reaction norms at the species level. I predicted that ground roosting behaviour favours bolder personality and more exploratory and active traits when compared with bats that do not ground roost. I examined inter- and intra-specific variation in behaviour using a modified, three-dimensional open-field test and quantified the frequency and duration of behaviours such as flying, landing, and crawling. Bats were continuously video-recorded over 1-hour nocturnal and diurnal trials. I used a priori mixed models with combinations of individual characteristics and life-history traits to select the models that best describe each species. We found that M. leibii (n = 15) displayed more exploratory and bolder behaviours than M. lucifugus while on the ground (n = 21) and higher overall activity during the trial. I also found that M. leibii displayed crawling behaviours and movements consistent with foraging while on the ground which is a rare behaviour in bats and only observed in a few species (Desmodus rotundus and Mystacina tuberculate to my knowledge). Future research should explore biomechanical adaptations associated with ground-foraging in M. leibii.

Author Keywords: Bats, Behaviour, Exploration, Myotis leibii, Myotis lucifugus, Roosting

2022

Ecological and morphological traits that affect the fitness and dispersal potential of Iberian pumpkinseed (Lepomis gibbosus)

Type:
Names:
Creator (cre): Yavno, Stan, Thesis advisor (ths): Fox, Michael G, Degree committee member (dgc): Wilson, Chris, Degree committee member (dgc): Reid, Scott, Degree granting institution (dgg): Trent University
Abstract:

The Pumpkinseed (Lepomis gibbosus) is a sunfish that is endemic to eastern portions of Canada and the United States. During the late 19th century, the species was introduced into Europe, and it is now present in over 28 countries. Previous attempts to determine the characteristics that can predict the spread of non-indigenous species have been largely unsuccessful, but new evidence suggests that phenotypic plasticity may help to explain the dispersal and range expansion of some organisms. Experimental comparisons on lower-order taxa have revealed that populations from areas outside of their native range are capable of exhibiting stronger levels of phenotypic plasticity than counterparts from their source of origin. Using Pumpkinseed, I conducted the first native/non- native comparison of phenotypic plasticity in a vertebrate. Progeny from adult Pumpkinseed collected in Ontario, Canada and the Iberian Peninsula (Spain) were reared under variable water velocities, habitat type and competitive pressures, three ecological factors that may affect the dispersal potential of fishes introduced into novel aquatic systems. Differences in phenotypic plasticity, assessed from a morphological perspective, were compared among populations using a traditional distance-based approach. All populations exhibited divergent morphological traits that appeared to be inherited over successive generations. In each experiment, all populations responded to environmental change by developing internal and external morphological forms that, in related taxa, enhance and facilitate foraging and navigation; however, non-native populations always exhibited an overall lower level of phenotypic plasticity. Pumpkinseed from non-native areas may have exhibited a reduction in phenotypic plasticity because of population-based differences. Nevertheless, all Pumpkinseed populations studied were capable of exhibiting phenotypic plasticity to novel environmental conditions, and develop morphological characteristics that may enhance fitness and dispersal in perturbed areas.

Author Keywords: Invasive species, Morphology, Phenotypic plasticity, Pumpkinseed sunfish, Reaction norm

2014

Evidence for hybrid breakdown in the cattail (Typha) hybrid swarm in southern Ontario

Type:
Names:
Creator (cre): Bhargav, V Vikram, Thesis advisor (ths): Dorken, Marcel MD, Thesis advisor (ths): Freeland, Joanna JF, Degree committee member (dgc): Bowman, Jeff JB, Degree committee member (dgc): Shafer, Aaron AS, Degree granting institution (dgg): Trent University
Abstract:

Heterosis, expressed as phenotypic superiority over parental species, typically peaks in first generation hybrids (F1s), while later generations (F2 +) exhibit lower fitness. The decrease in hybrid fitness is called hybrid breakdown. The overall incidence of hybrid breakdown in invasive hybrid zones remains poorly understood. The Laurentian Great Lakes (LGL) region contains a hybrid zone comprised of: native Typha latifolia, Typha angustifolia, and hybrid Typha × glauca. F1 T. × glauca display heterosis and are invasive, while later generation hybrids are relatively rare. To investigate possible hybrid breakdown, I compared seed germination and plant growth of backcrossed and advanced-generation (F2) hybrids to F1s and T. latifolia. I found evidence for hybrid breakdown in F2s and backcrossed hybrids, expressed as reduced growth and germination rates. Expression of hybrid breakdown in F2s and backcrosses may explain their relative rarity in the LGL hybrid zone.

Author Keywords: Advanced-generation hybrids, Backcrossed hybrids, Hybridization, introgression, Invasive species, plant competition

2021

Contemporary adaptive shifts in the physiology and life history of Pumpkinseed (Lepomis gibbosus) introduced into a warm climate

Type:
Names:
Creator (cre): Rooke, Anna Christine, Thesis advisor (ths): Fox, Michael G, Degree committee member (dgc): Burness, Gary, Degree committee member (dgc): Reid, Scott, Degree granting institution (dgg): Trent University
Abstract:

Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates.

Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology

2019

Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery

Type:
Names:
Creator (cre): Gobin, Jenilee, Thesis advisor (ths): Dunlop, Erin S, Thesis advisor (ths): Fox, Michael G, Degree committee member (dgc): Lester, Nigel P, Degree granting institution (dgg): Trent University
Abstract:

Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable.

Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment

2019

Agriculture as Niche Construction: Eco-Cultural Niche Evolution During the Neolithic (c. 6200 - 4900 BC) of the Struma River Valley

Type:
Names:
Creator (cre): Whitford, Brent Robbie, Thesis advisor (ths): Conolly, James, Degree committee member (dgc): Dubreuil, Laure, Degree committee member (dgc): Fitzsimons, Rodney, Degree granting institution (dgg): Trent University
Abstract:

The Neolithic Period (c. 6200 – 4900 BC) in the Struma River Valley led to numerous episodes of cultural diversification. When compared with the neighbouring regions, the ecological characteristics of the Struma River Valley are particularly heterogeneous and the Neolithic populations must have adapted to this distinctive and localized ecological setting. It then becomes reasonable to ask if the evolution of cultural variability in the Struma River Valley was at least partially driven by the ecological setting and differentiation in the evolution of the early agricultural niche. In this thesis, I apply an approach based on niche construction theory and Maxent species distribution modeling in order to characterize the relationship between culture and ecology during each stage of the Neolithic Period and to assess diachronic change. An interpretation of the results demonstrates that the continuous reconstruction of the early agricultural niche allowed for settlement expansion into new eco-cultural niches presenting different natural selection pressures and that cultural change followed. I also found that cultural and historical contingencies played an equally important role on the evolution of populations and that ecological factors alone cannot account for the numerous episodes of cultural diversification that occurred throughout the region.

Author Keywords: Agriculture, Bulgaria, Eco-cultural Niche Modeling, Greece, Neolithic, Niche Construction

2017