In this study we seek to better understand the potential effects of short-term (5-year) N fertilization on jack pine forest biogeochemistry, vascular plant community composition and to project a temporal endpoint of nitrogen leaching below the major rooting zone. Aqueous ammonium nitrate (NH4NO3) was applied above the forest canopy across five treatment plots (20 x 80 m) four times annually. The experimental deposition gradient followed those known for localized areas around the major open pit operations at 0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1 over a five-year period (2011 – 2015). Nitrate recovery in throughfall was significantly higher than NH4+ (p < 0.05), indicating canopy NH4+ immobilization. There was a strong treatment effect (p < 0.05) of N on the epiphytic lichen thalli concentrations of Hypogymnia physodes and Evernia mesomorpha after five years. The canopy appeared to approach saturation at the highest deposition load (25 kg N ha-1 yr-1) during the fifth year of N additions as most N added above the canopy was accounted for in throughfall and stemflow. The non-vascular (lichen and moss) vegetation pool above the forest floor was the largest receptor of N as cryptogam foliar and thalli N concentrations showed a significant treatment effect (p < 0.05). Nitrogen in decomposing litter (25 kg N ha-1 yr-1) remained immobilized after five years, while treatments ≤ 20 kg N ha-1 yr-1 started to mobilize. Understory vascular plant cover expansion was muted when deposition was ≥ 10 kg N ha-1 yr-1. Finally, modeling suggests the forest may not leach N below the rooting zone until around 50 years after chronic addition begin (25 kg N ha-1 yr-1). The modeling results are consistent with empirical data from a high exposure (~20 - 25 kg N ha-1 yr-1) jack pine site approximately 12 km west of the experimental site that has not yet experienced N leaching.
Author Keywords: Biogeochemistry, Canopy, Deposition, Jack Pine, Nitrogen, Understory