Biogeochemistry
Non-industrial wood ash chemistry and its biogeochemical effects on sugar maple (Acer saccharum, Marsh.) in three central Ontario sugar-bushes
Nutrient losses from forest soils caused by decades of acid deposition and intensive tree harvesting have affected tree growth and forest health in North America and Europe. Non-industrial wood ash (NIWA), a substance rich in macronutrients, may be a potential remediation strategy to return lost nutrients to forest. However, the chemical composition of NIWA and its effects on soil and tree growth are poorly understood. This thesis evaluated the chemical variability of non-industrial wood ash, and its short-term effects on soil properties, sugar maple (Acer saccharum) foliar chemistry, tree growth, and understory vegetation community composition at three sugar bushes in Muskoka, Ontario. The chemical analysis of NIWA samples obtained from the residents of Muskoka, showed that NIWA contains high levels of macro nutrients such as calcium, magnesium, and potassium and contains relatively low concentrations of trace metals. Ash mixtures amalgamated in the field were relatively homogenous in their chemical composition and metal concentrations were generally below Ontario NASM regulation guidelines for land application. Concentrations of copper and zinc exceeded CM1 guidelines, however, were always below restricted metals land application limits (CM2). Ten months after NIWA application to three sugar bush sites, soil pH and exchangeable base cations increased significantly in the litter and FH horizons at all treatment plots compared with control plots. Few treatment effects were recorded for the surface (0 – 10 cm) mineral horizon, with only potassium increasing in mineral soil at all three study sites. Elevated concentrations of most metals and metalloids (aluminum (Al), boron (B), cadmium (Cd), copper (Cu), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn)) were recorded in soil at all treatment plots, however these effects were generally restricted to the litter horizon. Diagnosis and recommendation integrated system analysis (DRIS) conducted on the sugar maple foliage indicated that potassium was the most limiting nutrient at all three study sites, and significant increases were recorded in foliar potassium concentrations ten months after ash application in sapling and mature trees at all treatment plots. Increases in foliar calcium and magnesium concentrations were small and variable amongst the study sites. No significant treatment effects of NIWA application were observed on sugar maple tree growth two years after ash application, while changes in understory composition were generally limited, but these also varied among sites.
Author Keywords: Acer saccharum, Base cations, Calcium decline, Forest soil amendment, non-industrial wood ash, Trace metals
The biogeochemistry of regreened forests on a mining and smelting degraded landscape
Mining and smelting degraded landscapes are characterised by heavily eroded soils that are acidic, contaminated with toxic metals, and depleted of essential nutrients. Regreening degraded landscapes has been proposed to support global carbon (C) mitigation measures and protect biodiversity. One of the world's largest regreening programs in the City of Greater Sudbury, Canada has been ongoing since 1978 and involves liming and fertilizing selected areas followed by planting primarily jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) trees. The main objective of this thesis was to improve our understanding of biogeochemistry in the City of Greater Sudbury regreened forests, and to determine how nutrient pools and cycling change as stands age. I established a chronosequence of forested sites between 15–40 years-old and to account for the effects of erosion, each site was categorized as "stable" (<10% bedrock cover) or "eroded" (>30% bedrock cover). Individual tree growth and nutrient accumulation in aboveground biomass (AGB) did not differ between stable and eroded sites and were comparable to rates reported from pine plantations in similar ecozones. Aboveground nitrogen (N) pools were six times larger than N applied in fertilizer, suggesting N limitation is most likely not a concern. Rates of C cycling were generally similar to those measured at unimpacted jack and red pine plantations. The exception being a decrease in mineral soil and aggregate C concentrations. However, at the ecosystem-scale the loss of soil C is trivial in comparison to increases in AGB C pools, leading to an overall increase in total ecosystem C following regreening (550,547 Mg in aboveground C across the 19,649 ha regreening landscape). Litter decomposition rates were higher at the regreening sites using a site-specific litter compared to a general common litter, indicating a home-field advantage for local decomposers. Soil temperature varied at the regreening sites and higher soil temperatures were related to higher rates of soil respiration. The regreening sites are rich in calcium (Ca) and magnesium (Mg); and while soils were generally poor in phosphorous (P) and potassium (K), foliar concentrations of P and K were comparable to those of "healthy" red pines. Overall, the regreening program appears to have increased tree growth and produced jack and red pine plantations that are biogeochemically similar to conifer plantations unimpacted by over a century of mining and smelting impacts.
Author Keywords: biogeochemistry, degraded landscape, forests, nutrient cycling, regreening, soil carbon
Assessing Mercury and Methylmercury levels in the Wabigoon River with special attention on mercury methylation
The Wabigoon River is known for an historic mercury (Hg) pollution source, caused by a chlor-alkali facility operating in the 1960s. As legacy Hg contamination continues to cause serious adverse health effects to the local communities living in the Wabigoon River region, it is imperative to undertake additional research to understand the deposition and transport of historical mercury in this system and more importantly, its conversion into methylmercury (MMHg) which renders it bioavailable for ongoing bioaccumulation. The aim of this dissertation was to evaluate the transport and accumulation of Hg species by doing a spatial and temporal analysis of concentrations of mercury and methylmercury along the Wabigoon River, as well as assessing rates of methylation and demethylation, identifying areas of higher methylmercury production. Results show that locations downstream from the pollution source still show elevated mercury concentrations, with levels at least five times higher in water and up to 134 times higher in sediments compared to background levels. Among selected study sites, the Hydroelectric dam, the Wabigoon Rapids wetland and Clay Lake were identified to have high capacity for methylmercury production in the system, with notably Clay Lake presenting a higher potential for methylmercury accumulation due to the observed lower methylmercury demethylation rate. Furthermore, the impact of wetting and drying cycles on Hg methylation in riverbed and wetland locations within the Wabigoon River system was investigated through a laboratory simulation. Findings indicated increased susceptibility of riverbed locations to wetting and drying cycles.
Author Keywords: Demethylation, Mercury, Methylation, Methylmercury, Wabigoon River
Nutrient dynamics and stoichiometry in stormwater management ponds
Although stormwater management ponds (SWMPs) are frequently used to mitigate flooding in urban areas, we still do not fully understand how these systems impact water quality in a watershed. Currently, most research focuses on the effectiveness of SWMPs to retain nutrients during high flows, even though there is potential for internal nutrient releases to occur in these systems during low flows. To investigate if SWMPs act as nutrient sources or sinks during low flow conditions, we analyzed how sewershed characteristics, pond properties, and hydrological and limnological factors influenced nutrient dynamics and stoichiometry in 10 SWMPs. Our study ponds were located in Peterborough, Whitby, and Richmond Hill, which are urbanized municipalities in southern Ontario, Canada. During October 2010 to 2011, we took monthly measurements of various carbon (C), nitrogen (N), and phosphorus (P) forms. We collected samples in the inlets, permanent pools, and outlets to determine any changes in concentrations, loads, and stoichiometric ratios into and out of the ponds. At the time of sampling, we also measured a variety of hydrological and limnological parameters. Our findings indicate that more urbanized sewersheds with higher drainage densities tend to have higher inflowing particulate and dissolved nutrient loads. In addition, we found that pond properties such as depth, length-to-width ratio, volume, and age differentially influence the retention of particulate and dissolved C, N, and P forms. Influential hydrological and limnological factors were antecedent moisture conditions, season, and thermal stratification. We found higher particulate P concentrations near the sediments when the catchments were drier and the ponds were ice-free and stratified. As well, we found higher outflowing stoichiometric ratios for DOC:TDN and DOC:TDP. This indicates an enrichment of C compared to N and P and suggests biogeochemical processes may be occurring in SWMPs. Overall, our results demonstrate that SWMPs are complex aquatic systems, and we need to consider biogeochemical processes in our design and maintenance activities, so that the effectiveness of SWMPs is not compromised during low flow conditions as a result of internal nutrient releases.
Author Keywords: Carbon, Nitrogen, Phosphorus, Urban biogeochemical cycling, Urban stormwater pond
Animal-mediated elemental cycling across time, space, and animal functional traits
Animals are essential to freshwater biogeochemistry and productivity. Through their excretion, aquatic consumers release bioavailable nutrients and carbon that can vary with animal taxonomic rank, trophic position, and abiotic factors such as light and nutrient supply. In fresh waters, light and nutrient supply is often modulated by dissolved organic matter (DOM), a "murky" component in the water that gives it a brown color and that may indirectly affect animal nutrient and carbon excretion. Additionally, contaminants can impact animal physiology, altering metabolism and inducing stress, further affecting nutrient and contaminant excretion. The size and structure of the ecosystem, including community composition and biomass, can also impact the contribution of aquatic animals to the elemental pool. To understand these dynamics, I examined animal‐mediated elemental cycling in freshwater ecosystems across gradients of DOM concentration and composition and under contaminant exposure. I tested fish and invertebrate nitrogen, phosphorus, and DOM excretion across trophic positions during two sampling events in Lake Erie and in naturally DOM-variable streams and lakes. I also investigated the effects of chronic exposure to silver nanoparticles (AgNP) under environmentally relevant conditions on fish nutrient and silver (Ag) release. I found that aquatic animals can be a substantial nutrient contributor to the nutrient pool, particularly when their population biomass is high and ambient nutrient concentrations are low. I also detected nonlinear relationships between animal nutrient excretion and DOM characteristics that varied with taxonomic rank and trophic position and that dampened at larger ecological scales. Importantly, I identified several fish DOM excretion signatures that differed relative to ambient DOM and reported the first fish Ag excretion rates under AgNPs exposure. My results underscore the context-dependency and variability inherent in animal-mediated elemental cycling, highlighting the critical role of animals as both modifiers and conduits of nutrients, DOM, and contaminants in aquatic ecosystems.
Author Keywords: carbon, consumer-nutrient driven dynamics, ecological stoichiometry, nitrogen, phosphorus, silver nanoparticles
Dissolved organic phosphorus and dissolved organic matter in Lake Erie and its tributaries
Phosphorus is the growth-limiting nutrient in freshwater environments. Dissolved organic phosphorus (DOP) refers to phosphorus within dissolved organic matter (DOM). Much of DOP is bioavailable, but it is poorly understood due to its complexity. This thesis explores the export DOP to Lake Erie from its tributaries, by investigating its speciation and concentration seasonally through weekly sampling of two tributaries and spatially across a river to lake transect. The rivermouth was a site of rapid transition, with lower concentrations of DOP in the lake than in the river and a greater proportion of P as DOP in the lake. Phosphomonoesters and aromatic DOM were coupled in the medium-sized Grand River, but not in the Upper Great Lakes-influenced Detroit River. Phosphodiesters and highly processed DOM were coupled in the Detroit River, but only during periods of low terrestrial inputs. Finally, we found that DOP is a large contributor to tributary phosphorus exports.
Author Keywords: dissolved organic matter, dissolved organic phosphorus, enzymatic hydrolysis, Lake Erie, nutrient export, rivermouth
Biogeochemical Responses to a Non-Industrial Wood Ash Addition in a South-Central Ontario Forest
Recovery of forest soils from chronic acidification can be enhanced with the use of non-industrial wood ash (NIWA). Non-industrial wood ash is alkaline and contains high concentrations of macronutrients, but trace metal concentrations must be evaluated to limit risk of metal toxicity following application. Additionally, understanding how different forest ecosystem components respond to NIWA is essential to inform current policy regulating its use as a soil amendment. This study evaluated the response of sugar maple (Acer saccharum) sap yield and chemistry, the response of soils beneath maple, American beech (Fagus grandifolia) and mixed species canopies, and maple and beech fine roots, foliage, seedling abundance, and understory vegetation abundance and composition to an application of 6 Mg ha-1 NIWA. Eight 40 x 40 m plots were established in a hardwood stand in Bracebridge, Ontario and were sampled prior-to and up to two years following application of NIWA (n = 4). Non-industrial wood ash significantly increased organic horizon soil pH and macronutrient (Ca, Mg, and K) concentrations with increases in Mg and K extending to the mineral soils. Significantly higher concentrations of some trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn) were also observed, but these were restricted to the organic horizons. Sugar maple sap, pH, and sweetness were unaffected by NIWA application, and while increases were observed in nutrient and metal concentrations in sap, the differences were small and variable between years, and all concentrations were consistent with those commonly found in maple sap. Fine root biomass of maple and beech trees was not affected by NIWA application, but higher concentrations of K and Mg were observed in the roots of both species, consistent with higher concentrations observed in the mineral soil horizons beneath both species' canopies. Only significant increases were observed in K in sugar maple foliage. Both critical foliar concentrations and diagnosis and recommendation integrated system (DRIS) norms for sugar maple did not indicate mineral nutrient deficiencies at this site; although this site was acidic and nutrient-poor, this may account for the lack of differences observed, particularly between species. Changes observed in understory vegetation were driven by years rather than between treatments. These results suggest that moderate doses of NIWA can provide significant decreases in soil acidity and increase nutrient availability, with limited increases in metal concentrations that are primarily restricted to the organic horizons.
Author Keywords: American beech, metal toxicity, Non-industrial wood ash (NIWA), sap sweetness, sap yield, sugar maple
Spatiotemporal patterns of dissolved organic matter in Boreal Shield lakes and ice of the Laurentian Great Lakes
Dissolved organic matter (DOM) plays a vital role in lake ecosystems, yet its temporal and spatial variations in lakes remain poorly understood. This study investigates DOM dynamics in boreal lakes during the warm season and the Laurentian Great Lakes ice during winter. Sampling 10 boreal lakes in early and late June 2022, revealed subtle changes in DOM in the epilimnion and hypolimnion related to factors such as water residence time and stratification strength. In ice from the Great Lakes, lower dissolved organic carbon concentrations and a higher proportion of protein-like DOM were found compared to water, which mostly contained terrestrial-like DOM. Ice DOM composition varied with factors such as ice thickness, water nutrients, and DOM concentration in ice and water. In addition, we found that the potential release of protein-like DOM from ice to the water during spring melt is considerable and may fuel heterotrophic microbial metabolism.
Organic Matter and Total Mercury in Acid-Sensitive Lakes in Ireland
The following study measured dissolved organic carbon (DOC) and total mercury (THg) concentrations in acid sensitive lakes in the Republic of Ireland. Sixty-eight upland lakes and 48 lowland lakes were sampled for DOC; the upland lakes were additionally sampled for THg. Spatial variability of DOC was explained by regional precipitation and soil organic matter. A subset of lakes was tested for long-term trends and in contrast to reports of rising DOC in European surface waters, changes in DOC were minor. Spatial variability in THg was explained by DOC and organic matter aromaticity. Long-term THg concentrations increased, likely caused by inputs of terrestrial THg. A subset of lakes was sampled for sediment and soil and the results suggested soils drove THg variation in lake water and sediment. Lake water and sediment THg was low and consistent with background regions, while soil THg was relatively high due to high organic content.
Author Keywords: Dissolved Organic Carbon, Lakes, Organic Matter, Soil, Total Mercury, Water
The Effects of Agricultural Land Use Change on Nitrogen and Phosphorus in North Shore Lake Ontario Tributaries
Row crop agriculture and associated land use practices including tile drainage and conservation tillage have been cited as a probable cause of re-emerging eutrophication in the lower Great Lakes. In this thesis, I sought to quantify and evaluate the effect of agricultural land cover and land use changes on total phosphorus (TP) and nitrate-nitrogen (NO3-N) concentrations and export in north shore Lake Ontario tributaries. This included (a) a long-term data analyses at 12 large watersheds (47 to 278 km²) using historical land cover and water quality data (1971-2010), and (b) a space-for-time study examining 12 small sub-catchments (< 8 km²) with majority (> 50%) row crop, pasture, or forest cover. Concentrations of TP were greatest in urbanized watersheds and declined particularly during the first decades of the study period, while NO3-N concentrations were greatest and steadily increased in agricultural catchments with increasing row crop cover. The space-for-time approach revealed that TP concentrations were similar across agricultural land uses and that export was most dependent on runoff. Meanwhile, NO3-N concentrations and export were greatest in row crop catchments and were positively related to row crop area. These results suggest that increases in row crop cover and associated agricultural practices including increased nutrient amendments and tile drainage may be responsible for increased NO3-N concentrations and export in northern Lake Ontario tributaries.
Author Keywords: agriculture, Lake Ontario, nitrogen, phosphorus, streams, Water quality