Environmental and Life Sciences
Canid Predation of Domestic Sheep (Ovis aries) on Ontario Farms: Land Cover Associations and Disruptive Deterrent Testing
Livestock predation by wild predators is a frequent and complicated issue, often cited as a significant factor in the decline of livestock production and justification for killing predators. Coyotes (Canis latrans) are the primary predators of sheep in Ontario. Some farms appear to be more susceptible to predation than others, despite the use of mitigation techniques. I explored land cover in the vicinity of farms as a potential influence on the level of predation, as coyote abundance and wild prey are correlated with certain habitat types. Using model competition, I show that landscape explains little variation in predation levels over all farms, but can explain 27% of variation in the percent of a flock killed. Total forest edge habitat and distance between forest patches were both positively associated with losses, suggesting a reduction in forest cover surrounding a farm puts the flock at greater risk. In addition, I tested four disruptive deterrents for effectiveness at protecting flocks. A matched-pairs analysis did not show a statistically significant benefit of these non-lethal mitigation tools.
Author Keywords: Alternative Prey, Canis latrans, Coyote, Landscape, Predation Deterrents, Sheep
The Involvement of Endogenous Plant Hormones in The Regulatory Network of Fatty Acid Biosynthesis in Soybean Seed
The activities of phytohormones during the reproductive phase have been partially clarified in seed physiology while the biological role of plant hormones in oil accumulation during seed development has been investigated in part only. In this research, fatty acid (FA) contents and hormone profiles, including abscisic acid (ABA) and cytokinins (CKs) of seed samples in four different stages and comparing six soybean varieties have been investigated in order to examine the hypothesis that the endogenous plant hormones play important roles in FA production in soybean seeds. The FA contents increased significantly during this period while the hormone concentrations gradually declined towards the seed physical maturation. However, the interactions between FA contents and hormone profiles were complex and went beyond linear correlations. Hormone metabolism in the earlier stages of seed maturation period demonstrated numerous robust relationships with FA accumulations, as derived from several simple and multiple regression models in the determination of different FA contents. Evaluation of the effects of exogenous ABA and trans-Zeatin (tZ) on FA biosynthesis has revealed that ABA appears to be involved in the accumulations of unsaturated FAs while tZ participated in the synthesis of saturated and unsaturated FAs. Notably, the alterations of FA synthesis differ according to what exogenous hormone concentrations could be used.
Author Keywords: Abscisic acid, Cytokinin, Fatty acid, Seed development, Soybean
The third wheel: How red squirrels affect the dynamics of the lynx-snowshoe hare relationship
Population cycles are regular fluctuations in population densities, however, in recent years many cycles have begun to disappear. With Canada lynx this dampening has also been seen with decreasing latitude corresponding to an increase in prey diversity. My study investigates the role of alternate prey on the stability of the lynx-hare cycle by first comparing the functional responses of two sympatric but ecologically distinct predators on a primary and alternate prey. I then populated a three species predator-prey model to investigate the role of alternate prey on population stability. My results showed that alternate prey can promote stability, though they are unlikely to "stop the cycle". Furthermore, stability offered by alternate prey is contingent on its ability to increase intraspecific competition. My study highlights that population cycles are not governed by a single factor and that future research needs to be cognizant of interactions between alternate prey and intraspecific competition.
Author Keywords: alternate prey, Canis latrans, functional response, Lepus americanus, Lynx canadensis, Tamiasciurus hudsonicus
Geochemistry and Toxicity of a Large Slag Pile and its Drainage Complex in Sudbury, Ontario
This study was designed to determine the geochemistry and potential toxicity of water draining a large slag pile in Sudbury, Ontario, which runs through a pond complex prior to entering Alice Lake. Slag leaching experiments confirmed slag is a source of sulphate, heavy metals (including Fe, Al, Ni, Co, Cu, Zn, Pb, Cr, Mn) and base cations (Ca, K, Mg, Na). Concentrations of most metals draining through slag in column experiments were similar to metal concentrations measured at the base of the slag pile, although base cations, S and pH were much higher, possibly because of water inputs interacting with the surrounding basic glaciolacustrine landscape. The increase in pH rapidly precipitates metals leading to high accumulation in the surface sediments. Away from the base of the pile, an increase in vegetation cover leads to an increase in DOC and nutrients and transport of metals with strong binding affinities (Cu). Total metal concentration in water and sediment exceed provincial water quality guidelines, particularly near the slag pile, however WHAM7 modeling indicated that the free metal ion concentration in water is very low. Nevertheless, toxicity experiments showed that water with greater concentrations of solutes collected close to the slag pile negatively impacts D. magna suggesting that water draining the slag pile can adversely impact biota in nearby drainage areas.
Author Keywords: geochemistry, heavy metals, leaching, non-ferrous slag, precipitation, toxicity
The Regulation of Cytokinins During Kernel Development in High and Low Yielding Oat and Barley Lines
Cytokinins (CKs) are a family of plant phytohormones responsible for many areas of plant growth and development. There are four free base types of CKs found in higher plants, trans-zeatin (tZ), N6-(∆2-isopentenyl)adenine (iP), cis-Zeatin (cZ) and dihydrozeatin (DZ). CK biosynthesis is regulated by adenosine phosphate-isopentenyltransferase (IPT), which is encoded by a multi-gene family in many plant species. There are two types of IPT pathways responsible for CK production, the tRNA pathway and the AMP (ATP/ADP) pathway. The tRNA pathway putatively produces cZ and the latter predominantly produces iP type nucleotides. CKs have long been studied for their role in stress tolerance, signal transduction, and involvement in many areas of plant growth and development. This study focuses on the role of CKs and CK biosynthesis by IPT during kernel development and comparisons of its regulation in high and low yielding barley and oat lines. The sequence of a putative IPT encoding gene in barley and oat was identified by a blast search of other known IPT gene fragments in closely related species. Quantitative Real time PCR results based on primers designed for the putative barley and oat IPT gene revealed changes in expression of IPT during different stages of kernel development, but no significance difference was associated with yield. Correlation of IPT gene expression in barley with cZ CK profiles measured by HPLC-MS/MS, confirms a putative IPT gene is a tRNA- IPT. HPLC-MS/MS results reveal some CK types, such as benzyladenine, are more predominant in higher yielding lines. This suggests different types of CKs play a role in yield production. Future studies on more IPT genes in the barley and oat IPT gene family will outline a more clear representation of the role of IPT in barley kernel development.
Author Keywords: Benzyladenine, Cereal grain, Cytokinin, Isopentenyl Transferase, Mass Spectrometry, Real Time PCR
Mercury and Persistent Organic Pollutants in Remote Acid Sensitive Irish Lake Catchments
A catchment-based study was carried out at three remote acid sensitive Irish lakes to determine concentrations of Hg and POPs and to investigate the factors governing the partitioning of these pollutants in various environmental matrices. Both Hg and POPs are an environmental concern due to their ability to travel long distances via atmospheric transport and their tendency to accumulate in biota and in various environmental compartments. Concentrations of POPs and Hg measured in this study were relatively low and consistent with concentrations measured at background levels around the world. Mercury concentrations appeared to be influenced by various site characteristics, specifically organic matter. Many of the POPs examined in this study appeared to be present as a result of long-range transport and more specifically; the physico-chemical properties of POPs appeared to dictate their distribution within soils, moss and sediment at each of the study catchments.
Time-dependent effects of predation risk on stressor reactivity and growth in developing larval anurans (Lithobates pipiens)
The predator vs. prey dynamic is an omnipresent factor in ecological systems that may drive changes in life history patterns in prey animals through behavioural, morphological, and physiological changes. Predation risk can have profound effects on the life history events of an animal, and is influenced by the neuroendocrine stress response. Activation of the hypothalamic-pituitary-adrenal/interrenal axis, and the induction of stress hormones (e.g., corticosterone (CORT)) have been shown to mediate the onset of inducible anti-predator defensive traits including increased tail-depth, and reduced activity. The predator-prey relationship between dragonfly nymphs and tadpoles can be a powerful model system for understanding mechanisms that facilitate changes in the stress response in accordance with altered severity of risk. It has been well demonstrated early in tadpole ontogeny that increased corticosterone (CORT) levels, observed within three weeks of predator exposure, are correlated with increased tail depth morphology. However, the reactivity of the stress response in relation to the growth modulation in developing prey has yet to be fully explored. Accordingly, this thesis assessed the stress and growth response processes in tadpoles that were continuously exposed to perceived predation risk later in ontogeny. Continuous exposure of prey to predation risk for three weeks significantly increased CORT levels, and tail depth. However, tadpoles exposed to six weeks of predation risk acclimated to the presence of the predator, which was observed as a significant reduction of stressor-induced CORT levels. In addition, although increased tail depth has been attributed to predator defense, predator-naïve tadpoles began to display similar tail depth morphology as treated tadpoles at the six week time point. Thus, this thesis suggests that the stress response in lower vertebrate systems (e.g., tadpoles) may operate in a similarly complex manner to that observed in higher vertebrates (e.g., rats), for which severity of risk associated with the stressor aids in defining activity of the stress response. Moreover, the lack of morphological difference between treatments among tadpoles exposed later in ontogeny suggests that the mechanisms for inducing defenses are normal morphological traits in the development of the animal. This thesis paves the way for future research to elucidate the relationship between the neuroendocrine stress response and hormonal pathways involved in growth modulation in the presence of environmental pressures.
Author Keywords: Acclimation, Corticosterone, Growth Modulation, Predation Risk, R. pipiens, Tadpole
A Regional Assessment of Soil Calcium Weathering Rates and the Factors that Influence Lake Calcium in the Muskoka River Catchment, Central Ontario
(MRC) in central Ontario was carried out to determine the range and spatial distribution of soil Ca weathering rates, and investigate the relationships between lake Ca and soil and catchment attributes. The MRC is acid-sensitive, and has a long history of impacts from industrial emission sources in Ontario and the United States. Small headwater catchments were sampled for soil and landscape attributes (e.g. elevation, slope, catchment area) at 84 sites. Soil Ca weathering rates, estimated with the PROFILE model, were low throughout the region (average: 188 eq/(ha·yr)) compared to global averages, and lower than Ca deposition (average: 292 eq/(ha·yr)). Multiple linear regression models of lake Ca (n= 306) were dominated by landscape variables such as elevation, which suggests that on a regional scale, landscape variables are better predictors of lake Ca than catchment soil variables.
Author Keywords: Calcium, Lakes, Regional assessment, Regression, Soils, Weathering
Soil mineralizable nitrogen as an indicator of soil nitrogen supply for grain corn in southwestern Ontario
Soil mineralizable nitrogen (N) is the main component of soil N supply in humid temperate regions and should be considered in N fertilizer recommendations. The objectives of this study were to determine the potentially mineralizable N parameters, and improve N fertilizer recommendations by evaluating a suite of soil N tests in southwestern Ontario. The study was conducted over the 2013 and 2014 growing seasons using 19 field sites across southwestern Ontario. The average potentially mineralizable N (N0) and readily mineralizable N (Pool I) were 147 mg kg-1 and 42 mg kg-1, respectively. Pool I was the only soil N test that successfully predicted RY in 2013. The PPNT and water soluble N (WSN) concentration (0-30cm depth) at planting were the best predictors of fertilizer N requirement when combing data from 2013 and 2014. When soils were categorized based on soil texture, the relationships also improved. Our findings suggest that N fertilizer recommendations for grain corn can be improved, however, further field validations are required.
Author Keywords: corn, nitrogen, nitrogen mineralization, soil nitrogen supply, soil N test, southwestern Ontario
A methodological framework for the assessment and monitoring of forest degradation under the REDD+ programme based on remote sensing techniques and field data
In this thesis, a methodological framework for the assessment and monitoring of forest degradation based on remote sensing techniques and field data, as part of the REDD+ programme, is presented. The framework intends to support the implementation of a national Monitoring, Verification and Report (MRV) system in developing countries. The framework proposed an operational definition of forest degradation and a set of indicators, namely Canopy Cover (CC), Aboveground Biomass (AGB) and Net Primary Productivity (NPP), derived from remote sensing data. The applicability of the framework is tested in a sub-deciduous tropical forest in the Southeast of Mexico. The results from the application of the methodological framework showed that the higher rates of forest degradation, 1596-2865 ha·year-1, occur in areas with high population density. Estimations of aboveground biomass in these degraded areas span from 1 to 24 Mg·ha-1, with a rate of carbon fixation ranging from 130 to 246 gC·m2·year. The results also showed that 43 % of the forests of the study area remain with no evident signs of degradation, as detected by the indicators selected, during the period evaluated. The integration of the different elements conforming the methodological framework for the assessment and monitoring of forest degradation enabled the identification of areas that maintain a stable condition and areas that change over the period evaluated. The methodology outlined in this thesis also allows for the identification of the temporal and spatial distributions of forest degradation based on the indicators selected, and it is expected to serve as the basis for operations of the REDD+ programme with the appropriate adaptations to the area in turn.
Author Keywords: Forest degradation, Monitoring, REDD+, Remote Sensing, Tropical forest