Lecomte, Nicolas

Islands, ungulates, and ice: the response of caribou to a changing environment

Type:
Names:
Creator (cre): Jenkins, Deborah A., Thesis advisor (ths): Schaefer, James A, Thesis advisor (ths): Lecomte, Nicolas, Degree committee member (dgc): Conolly, James, Degree committee member (dgc): Ray, Justina, Degree granting institution (dgg): Trent University
Abstract:

Central to wildlife conservation and management is the need for refined, spatially explicit knowledge on the diversity and distribution of species and the factors that drive those patterns. This is especially vital as anthropogenic disturbance threatens rapid large-scale change, even in the most remote areas of the planet. My dissertation examines theinfluence of land- and sea-scape heterogeneity on patterns of genetic differentiation, diversity, and broad-scale distributions of island-dwelling ungulates in the Arctic Archipelago. First, I investigated genetic differentiation among island populations of Peary caribou (Rangifer tarandus pearyi) in contrast to continental migratory caribou (Rangifer tarandus) and evaluated whether genetic exchange among Peary caribou island populations was limited by the availability of sea ice – both now and in the future. Differentiation among both groups was best explained by geodesic distance, revealing sea ice as an effective platform for Peary caribou movement and gene flow. With future climate warming, substantial reductions in sea ice extent were forecast which significantly increased resistance to caribou movement, particularly in summer and fall. Second, I assessed genetic population structure and diversity of northern caribou and deciphered how Island Biogeography Theory (IBT) and Central Marginal Hypothesis (CMH) could act in an archipelago where isolation is highly variable due to the dynamics of sea ice. Genetic differentiation among continental and island populations was low to moderate. In keeping with IBT and CMH, island-dwelling caribou displayed lower genetic diversity compared to mainland and mainland migratory herds; the size of islands (or population range) positively influenced genetic diversity, while distance-to-mainland and fall ice-free coastlines negatively influenced genetic diversity. Hierarchical structure analysis revealed multiple units of caribou diversity below the species level. Third, I shifted my focus to the terrestrial landscape and explored the elements governing species-environment relationships. Using species distribution models, I tested the response of caribou and muskoxen to abiotic versus abiotic + biotic predictors, and included distance to heterospecifics as a proxy for competitive interactions. Models that included biotic predictors outperformed models with abiotic predictors alone, and biotic predictors were most important when identifying habitat suitability for both ungulates. Further, areas of high habitat suitability for caribou and muskoxen were largely disjunct, limited in extent, and mainly outside protected areas. Finally, I modelled functional connectivity for two genetically and spatially disjunct groups of island-dwelling caribou. For High Arctic caribou, natural and anthropogenic features impeded gene flow (isolation-by-resistance); for Baffin Island caribou we found panmixia with absence of isolation-by-distance. Overall, my dissertation demonstrates the varying influences of contemporary land- and sea-scape heterogeneity on the distribution, diversity and differentiation of Arctic ungulates and it highlights the vulnerability of island-dwelling caribou to a rapidly changing Arctic environment.

Author Keywords: Circuitscape, connectivity, Island Biogeography, landscape genetics, population structure, species distribution models

2022