Schaefer, James A

Islands, ungulates, and ice: the response of caribou to a changing environment

Type:
Names:
Creator (cre): Jenkins, Deborah A., Thesis advisor (ths): Schaefer, James A, Thesis advisor (ths): Lecomte, Nicolas, Degree committee member (dgc): Conolly, James, Degree committee member (dgc): Ray, Justina, Degree granting institution (dgg): Trent University
Abstract:

Central to wildlife conservation and management is the need for refined, spatially explicit knowledge on the diversity and distribution of species and the factors that drive those patterns. This is especially vital as anthropogenic disturbance threatens rapid large-scale change, even in the most remote areas of the planet. My dissertation examines theinfluence of land- and sea-scape heterogeneity on patterns of genetic differentiation, diversity, and broad-scale distributions of island-dwelling ungulates in the Arctic Archipelago. First, I investigated genetic differentiation among island populations of Peary caribou (Rangifer tarandus pearyi) in contrast to continental migratory caribou (Rangifer tarandus) and evaluated whether genetic exchange among Peary caribou island populations was limited by the availability of sea ice – both now and in the future. Differentiation among both groups was best explained by geodesic distance, revealing sea ice as an effective platform for Peary caribou movement and gene flow. With future climate warming, substantial reductions in sea ice extent were forecast which significantly increased resistance to caribou movement, particularly in summer and fall. Second, I assessed genetic population structure and diversity of northern caribou and deciphered how Island Biogeography Theory (IBT) and Central Marginal Hypothesis (CMH) could act in an archipelago where isolation is highly variable due to the dynamics of sea ice. Genetic differentiation among continental and island populations was low to moderate. In keeping with IBT and CMH, island-dwelling caribou displayed lower genetic diversity compared to mainland and mainland migratory herds; the size of islands (or population range) positively influenced genetic diversity, while distance-to-mainland and fall ice-free coastlines negatively influenced genetic diversity. Hierarchical structure analysis revealed multiple units of caribou diversity below the species level. Third, I shifted my focus to the terrestrial landscape and explored the elements governing species-environment relationships. Using species distribution models, I tested the response of caribou and muskoxen to abiotic versus abiotic + biotic predictors, and included distance to heterospecifics as a proxy for competitive interactions. Models that included biotic predictors outperformed models with abiotic predictors alone, and biotic predictors were most important when identifying habitat suitability for both ungulates. Further, areas of high habitat suitability for caribou and muskoxen were largely disjunct, limited in extent, and mainly outside protected areas. Finally, I modelled functional connectivity for two genetically and spatially disjunct groups of island-dwelling caribou. For High Arctic caribou, natural and anthropogenic features impeded gene flow (isolation-by-resistance); for Baffin Island caribou we found panmixia with absence of isolation-by-distance. Overall, my dissertation demonstrates the varying influences of contemporary land- and sea-scape heterogeneity on the distribution, diversity and differentiation of Arctic ungulates and it highlights the vulnerability of island-dwelling caribou to a rapidly changing Arctic environment.

Author Keywords: Circuitscape, connectivity, Island Biogeography, landscape genetics, population structure, species distribution models

2022

SPATIAL AND TEMPORAL GENETIC STRUCTURE OF WOLVERINE POPULATIONS

Type:
Names:
Creator (cre): Zigouris, Joanna, Thesis advisor (ths): Schaefer, James A, Thesis advisor (ths): Kyle, Christopher J, Degree committee member (dgc): Wilson, Paul J, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Habitat loss and fragmentation can disrupt population connectivity, resulting in small, isolated populations and low genetic variability. Understanding connectivity patterns in space and time is critical in conservation and management planning, especially for wide-ranging species in northern latitudes where habitats are becoming increasingly fragmented. Wolverines (Gulo gulo) share similar life history traits observed in large-sized carnivores, and their low resiliency to disturbances limits wolverine persistence in modified or fragmented landscapes - making them a good indicator species for habitat connectivity. In this thesis, I used neutral microsatellite and mitochondrial DNA markers to investigate genetic connectivity patterns of wolverines for different temporal and spatial scales. Population genetic analyses of individuals from North America suggested wolverines west of James Bay in Canada are structured into two contemporary genetic clusters: an extant cluster at the eastern periphery of Manitoba and Ontario, and a northwestern core cluster. Haplotypic composition, however, suggested longstanding differences between the extant eastern periphery and northwestern core clusters. Phylogeographic analyses across the wolverine's Holarctic distribution supported a postglacial expansion from a glacial refugium near Beringia. Although Approximate Bayesian computations suggested a west-to-east stepping-stone divergence pattern across North America, a mismatch distribution indicated a historic bottleneck event approximately 400 generations ago likely influenced present-day patterns of haplotype distribution. I also used an individual-based genetic distance measure to identify landscape features potentially influencing pairwise genetic distances of wolverines in Manitoba and Ontario. Road density and mean spring snow cover were positively associated with genetic distances. Road density was associated with female genetic distance, while spring snow cover variance was associated with male genetic distance. My findings suggest that northward expanding anthropogenic disturbances have the potential to affect genetic connectivity. Overall, my findings suggest that (1) peripheral populations can harbour genetic variants not observed in core populations - increasing species genetic diversity; (2) historic bottlenecks can alter the genetic signature of glacial refugia, resulting in a disjunct distribution of unique genetic variants among contemporary populations; (3) increased temporal resolution of the individual-based genetic distance measure can help identify landscape features associated with genetic connectivity within a population, which may disrupt landscape connectivity.

Author Keywords: conservation genetics, Holarctic species, landscape genetics, peripheral population, phylogeography, wolverine

2015

Home range use, habitat selection, and stress physiology of eastern whip-poor-wills (Antrostomus vociferus) at the northern edge of their range

Type:
Names:
Creator (cre): Rand, Gregory James, Thesis advisor (ths): Nocera, Joseph J, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

The distribution of animals is rarely random and is affected by various environmental factors. We examined space-use patterns, habitat selection and stress responses of whip-poor-wills to mining exploration activity.To the best of my knowledge, fine scale patterns such as the habitat composition within known home ranges or territories of eastern whip-poor-wills have not been investigated. Using a population at the northern edge of the distribution in an area surrounding a mining exploration site, we tested whether variations in habitat and anthropogenic disturbances influence the stress physiology of individuals. We found no effect of increased mining activity on the stress physiology of birds but found a significant scale-dependent effect of habitat on their baseline and stress-induced corticosterone levels, and we suggest that these are the result of variations in habitat quality. The importance of other factors associated with those habitat differences (e.g., insect availability, predator abundance, and microhabitat features) warrants further research.

Author Keywords: anthropogenic disturbances, Antrostomus vociferus, corticosterone, eastern whip-poor-will, habitat selection, radio-­telemetry

2014

The Influence of Habitat on Woodland Caribou Site Fidelity

Type:
Names:
Creator (cre): Sherritt, Ayden Frazer, Thesis advisor (ths): Schaefer, James A, Thesis advisor (ths): Pond, Bruce A, Degree committee member (dgc): Brown, Glen S, Degree committee member (dgc): Brannen, Dennis, Degree granting institution (dgg): Trent University
Abstract:

Site fidelity is the behaviour of individuals to return to the same location; for female woodland caribou it may reflect reproductive success and depend on habitat quality. I investigated the influence of landscape and disturbance conditions on fidelity among three populations in Manitoba and Ontario, Canada. Habitat classifications were based on Forest Resource Inventory (FRI) and Landsat TM landcover maps. A total of 261 sites were ground-truthed to determine mapping accuracy. An amalgamated map incorporating FRI and Landsat TM data was estimated from field measurements to have an overall accuracy of 69.0%. Site fidelity was expressed as the distance between consecutive-year locations of individuals and was investigated during five week-long periods representing calving, early and late post-calving, winter, and breeding. Site fidelity was strongest during the post-calving seasons and weakest during the winter. Habitat had little influence on site fidelity in all seasons, excepting winter, even under highly disturbed conditions, suggesting maintenance of fidelity may be a maladaptive trait. Individual variation proved a strong predictor and cursory mapping indicated that caribou may return to sites visited two or more years earlier. Conservation management and policy should recognize that site fidelity may represent an ecological trap.

Author Keywords: calving, disturbance, habitat, movement, Rangifer tarandus caribou, site fidelity

2015

Reintroducing species in the 21st century: incorporating climate change into translocation and de-extinction programs

Type:
Names:
Creator (cre): Peers, Michael J L, Thesis advisor (ths): Murray, Dennis L, Degree committee member (dgc): Thornton, Daniel H, Degree committee member (dgc): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

Climate change has had numerous impacts on species' distributions by shifting suitable habitat to higher latitudes and elevations. These shifts pose new challenges to biodiversity management, in particular translocations, where suitable habitat is considered crucial for the reintroduced population. De-extinction is a new conservation tool, similar to reintroduction, except that the proposed candidates are extinct. However, this novel tool will be faced with similar problems from anthropogenic change, as are typical translocation efforts. Using ecological niche modelling, I measured suitability changes at translocation sites for several Holarctic mammal species under various climate change scenarios, and compared changes between release sites located in the southern, core, and northern regions of the species' historic range. I demonstrate that past translocations located in the southern regions of species' ranges will have a substantial decline in environmental suitability, whereas core and northern sites exhibited the reverse trend. In addition, lower percentages (< 50% in certain scenarios) of southern sites fall above the minimal suitability threshold for current and long-term species occurrence. Furthermore, I demonstrate that three popular de-extinction candidate species have experienced changes in habitat suitability in their historic range, owing to climate change and increased land conversion. Additionally, substantial increase in potentially suitable space is projected beyond the range-limits for all three species, which could raise concerns for native wildlife if de-extinct species are successfully established. In general, this thesis provides insight for how the selection of translocation sites can be more adaptable to continued climate change, and marks perhaps the first rigorous attempt to assess the potential for species de-extinction given contemporary and predicted changes in land use and climate.

Author Keywords: climate change, de-extinction, ecological niche models, MaxEnt, reintroduction, translocation

2015

Demography and habitat selection of Newfoundland caribou

Type:
Names:
Creator (cre): Bastille-Rousseau, Guillaume, Thesis advisor (ths): Murray, Dennis L, Thesis advisor (ths): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

The objective of this thesis is to better understand the demography and habitat selection of Newfoundland caribou. Chapter 1 provides a general introduction of elements of population ecology and behavioural ecology discussed in the thesis. In Chapter 2, I examine the causes of long-term fluctuations among caribou herds. My findings indicate that winter severity and density-dependent degradation of summer range quality offer partial explanations for the observed patterns of population change. In Chapter 3, I investigate the influence of climate, predation and density-dependence on cause-specific neonate survival. I found that when caribou populations are in a period of increase, predation from coyotes and bears is most strongly influenced by the abiotic conditions that precede calving. However, when populations begin to decline, weather conditions during calving also influenced survival. I build on this analysis in Chapter 4 by determining the influence of climate change on the interplay between predation risk and neonate survival. I found that the relative equilibrium between bears and coyotes may not persist in the future as risk from coyotes could increase due to climate change. In Chapter 5, I investigate the relationships in niche overlap between caribou and their predators and how this may influence differential predation risk by affecting encounter rates. For coyotes, seasonal changes in niche overlap mirrored variation in caribou calf risk, but had less association with the rate of encounter with calves. In contrast, changes in niche overlap during the calving season for black bears had little association with these parameters. In Chapter 6, I examine broad-level habitat selection of caribou to study trade-offs between predator avoidance and foraging during the calving season. The results suggest that caribou movements are oriented towards increased access to foraging and the reduction of encounter risk with bears, and to a lesser extent, coyotes. Finally, I synthesize the major findings from this thesis and their relevance to caribou conservation in Chapter 7, to infer that Newfoundland caribou decline is ultimately driven by extrinsic and intrinsic elements related to density-dependence. Reduction in neonate survival emerged from nutritionally-stressed caribou females producing calves with lower survival.

Author Keywords: Behavioural ecology, Black bear (Ursus americanus), Coyote (Canis latrans), Population ecology, Predator-prey interactions, Woodland caribou (Rangifer tarandus)

2015

Syrphidae (Diptera) of northern Ontario and Akimiski Island, Nunavut: new diversity records, trap analysis, and DNA barcoding

Type:
Names:
Creator (cre): Vezsenyi, Kathryn Anne, Thesis advisor (ths): Beresford, David V, Thesis advisor (ths): Schaefer, James A, Degree committee member (dgc): Skevington, Jeffrey H, Degree committee member (dgc): Crins, William, Degree granting institution (dgg): Trent University
Abstract:

Syrphids, also known as hover flies (Diptera: Syrphidae) are a diverse and widespread family of flies. Here, I report on their distributions from a previously understudied region, the far north of Ontario, as well as Akimiski Island, Nunavut. I used samples collected through a variety of projects to update known range and provincial records for over a hundred species, bringing into clearer focus the distribution of syrphids throughout this region. I also analysed a previously un-tested trap type for collecting syrphids (Nzi trap), and report on results of DNA analysis for a handful of individuals, which yielded a potential new species.

Author Keywords: Diptera, Ontario, range extension, Syrphidae

2019

Discriminating grey wolf (Canis lupus) predation events in a multi-prey system in central Saskatchewan

Type:
Names:
Creator (cre): Irvine, Courtney Christine, Thesis advisor (ths): Patterson, Brent R, Degree committee member (dgc): Cherry, Seth G, Degree committee member (dgc): Pond, Bruce A, Degree committee member (dgc): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

I investigated if spatio-temporal behaviour of grey wolves (Canis lupus) determined via GPS collar locations could be used to discriminate predation events generally, and among prey species, in Prince Albert National Park during winter, 2013-2017. I used characteristics of spatio-temporal GPS clusters to develop a predictive mixed-effect logistic regression model of which spatial clusters of locations were wolf kill sites. The model suffered a 60 % omission error when tested with reserved data due to the prevalence of deer kills with correspondingly low handling time. Next, I found a multivariate difference in the percentage of habitat classes used by wolves in the 2 hours preceding predation events of different prey species, suggesting that wolf habitat use reflects prey selection at a fine-scale. My results highlight the difficulty and future potential for remoting discriminating wolf predation events via GPS collar locations in multi-prey ecosystems.

Author Keywords: Canis lupus, GPS clusters, GPS collars, grey wolf, habitat use, predation

2020

Biogeography of Carabidae (Coleoptera) in the Boreal forest

Type:
Names:
Creator (cre): Fleming, Kaitlyn Julia, Thesis advisor (ths): Beresford, David V, Thesis advisor (ths): Schaefer, James A, Degree committee member (dgc): Smith, M. Alex, Degree committee member (dgc): Abraham, Kenneth F, Degree granting institution (dgg): Trent University
Abstract:

Basic biogeographic information is lacking for many species, such as where species are found, and how they dispersed there. Using ground beetles collected during 2008-2015 from across northern Ontario and Akimiski Island, Nunavut, I present new information on ground beetle distribution in this eastern Nearctic boreal forest, including 2 first Canadian records, 9 first provincial and 48 first territorial records, as well as 74 new records that extend the known range of many large and common ground beetles several hundred kilometres. I used these distributions to redress the knowledge gap that includes fundamental distribution data, i.e. the Wallacean shortfall, and to inform later chapters in my thesis.In Chapter 3, I examine the range expansion pattern of Carabus granulatus, a non-native species, as it spread across northeastern North America and I provide a new range record. Northern Ontario is already under threat from non-native species entering the region and it is important to conduct studies in the region before more disturbance associated with development occurs. In Chapter 4, I examine the hypothesis that northern Ontario effectively acts as a climate plateau for poikilotherms, using the predictions from Bergmann's rule as my metric. The body length of ground beetles does not appear to change over the small temperature gradient that exists across northern Ontario latitudes, supporting the climate plateau hypothesis. In Chapter 5, I test hypotheses about dispersal mechanisms that contributed to post glacial re-establishment of ground beetles using predictions of geographic distribution patterns as metrics. I found that ground beetles were likely carried downstream by rivers which aided their dispersal northward from southern refugia. I infer from the current geographic distributions that flightless ground beetle species are still expanding their range in this boreal region. Finally, I argue that there is an urgent need for more basic research on species distributions while it is still possible in regions like northern Ontario, before increased industrial and agricultural development, and expanding resource extraction projects obliterate evidence of historic ecological processes.

Author Keywords: Boreal forest, Carabidae, Coleoptera, Passive dispersal, Post-glacial distribution, Range extension

2021

Using automated radio-telemetry to link food availability, reproductive success, and habitat use of Barn Swallows (Hirundo rustica erythrogaster)

Type:
Names:
Creator (cre): Lenske, Ariel, Thesis advisor (ths): Nocera, Joseph J, Degree committee member (dgc): Schaefer, James A, Degree committee member (dgc): Nol, Erica, Degree granting institution (dgg): Trent University
Abstract:

Drivers of North American Barn Swallow population declines are not well understood, but foraging habitat loss is thought to be a contributing factor. Determining patterns of habitat use is challenging for swallows because they move rapidly but are too small to carry GPS tags. We showed that automated radio-telemetry could be used to track the movements of swallows with enough accuracy (median error 250 m) to monitor local habitat use. We then combined information on breeding Barn Swallows habitat use, land cover, aerial insect abundance, and fledging success to test for a link between foraging habitat quality and reproductive success. Foraging activity was concentrated within 600 m of nest sites and varied with land cover; however, responses to land cover were not consistent across birds. Aerial insects were most abundant near wetlands and least abundant near open water and over cropland. Consistent with a link between foraging habitat and reproductive success, nests in barns with more wetland and less open water within 1 km, and with less field area within 2 km occupied by row crops, on average fledged more young swallows.

Author Keywords: aerial insectivores, automated telemetry, habitat use, land cover, movement, nest success

2018