Zoology

The mycobiome and skin chemistry of bat wings in relation to white-nose syndrome

Type:
Names:
Creator (cre): Vanderwolf, Karen J, Thesis advisor (ths): Davy, Christina, Thesis advisor (ths): Kyle, Christopher, Degree committee member (dgc): Donaldson, Michael, Degree committee member (dgc): McAlpine, Donald, Degree granting institution (dgg): Trent University
Abstract:

White-nose syndrome (WNS) is a skin disease of bats caused by the fungus Pseudogymnoascus destructans (Pd) that damages flight membranes during hibernation and can lead to death. The disease causes mortality of multiple bat species in eastern North America and is spreading into western North America. Future impacts of WNS on naïve bat populations are unknown. Variation in host susceptibility occurs among and within species, but mechanisms driving this variation are unclear. Multiple studies have characterized immunological responses to WNS, but skin physiology as a barrier to pathogens is understudied. The unique ability of Pd to actively penetrate the normal, intact skin of its mammalian host makes WNS an interesting study system to understand skin defenses. Aspects of the mammalian skin environment that can influence disease susceptibility include pH, sebaceous lipids, and microbiomes. I found skin mycobiomes of WNS-susceptible species had significantly lower alpha diversity and abundance compared to bat species resistant to Pd infection. Using these data, I predicted that most naïve bat species in western North America will be susceptible to WNS based on the low diversity of their skin mycobiomes. Some fungi isolated from bat wings inhibited Pd growth in vitro, but only under specific salinity and pH conditions, suggesting the microenvironment on wings can influence microbial interactions and potentially WNS-susceptibility. I measured the wing-skin pH of bats in eastern Canada and found that Eptesicus fuscus (WNS-tolerant) had more acidic skin than M. lucifugus (WNS-susceptible). Differences in sebum quantity and composition among and within mammalian species may help explain variation in skin disease susceptibility and the composition of skin microbiomes. This is due to the antimicrobial properties of sebum and the use of sebum as a nutrition source by microbes. Outcomes of this work further our understanding of inter- and intra-specific differences among bat species and individuals in skin mycobiomes and physiology, which may contribute to variation in WNS-susceptibility. Future research should focus on characterizing the physical and chemical landscape of skin as this is essential for understanding mechanisms structuring skin microbial assemblages and skin disease susceptibility in wildlife.

Author Keywords: bat, fungi, microbiome, mycology, physiology, white-nose syndrome

2022

Combining Line Transect Sampling and Photographic-Identification Surveys to Investigate the Abundance and Distribution of Cetaceans

Type:
Names:
Creator (cre): Javdan, Shiva, Thesis advisor (ths): White, Bradley N, Degree committee member (dgc): Hill, Stephen, Degree committee member (dgc): Obbard, Martyn, Degree granting institution (dgg): Trent University
Abstract:

Line transect sampling and photographic-identification (photo-ID) are common survey techniques for estimating the abundance and distribution of cetaceans. Combining these approaches in the field ('combined LTPI' surveys) and using data from both components has the potential for generating comprehensive ecological knowledge that can be far more valuable than when these techniques and their data are used independently. In this thesis, I evaluated the results and conclusions from these two methods, used singly and in tandem, by investigating the population dynamics of two humpback dolphin (Sousa chinensis spp.) populations: the large and widely distributed Chinese white dolphin (S. c. chinensis) of the Pearl River estuary (PRE), and the small and geographically isolated subspecies of Taiwanese white dolphin (S. c. taiwanensis) in the eastern Taiwan Strait. Data from combined LTPI surveys in Hong Kong waters, at the eastern edge of the PRE, revealed a shift in space use with individuals spending less time in these waters than at the start of surveys. Data from combined LTPI surveys in Taiwan provided further support for a subspecies restricted to the central western waters, and identified a commonly used area at the northern part of their limited range. These two case studies demonstrated an overall efficacy of combined LTPI surveys in ecological studies of cetaceans. However, a multi-criteria analysis revealed that combined LTPI surveys with a line transect focus (e.g., Hong Kong) performed better than a LTPI survey with a photo-ID focus (e.g., Taiwan) when considering ecological aspects of the study populations, labour and data requirements, and ecological output. Even so, the photo-ID focus of Taiwan's monitoring program led to better assessments of individual space use patterns, likely helped by the Taiwanese white dolphin population's smaller size and intensive photographic effort. In both cases, the ecological output of combined LTPI surveys could be improved by expanding the study area or extending the field season or frequency of surveys. Overall, I showed that by following a set of general guidelines, different iterations of the combined LTPI approach (i.e., photo-ID focus or LT focus) can serve as powerful tools for uncovering multi-dimensional ecological information on cetaceans.

Author Keywords: abundance, cetacean, distribution, line transect sampling, multi-criteria analysis, Photo-ID

2022

USE OF SALIVARY CORTISOL TO EVALUATE THE INFLUENCE OF RIDES ON THE STRESS PHYSIOLOGY OF DROMEDARY CAMELS (CAMELUS DROMEDARIUS): VALIDATION OF METHODS AND ASSESSMENT OF SALIVA STORAGE TECHNIQUES

Type:
Names:
Creator (cre): Majchrzak, Yasmine Nicole, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Mastromonaco, Gabriela, Degree committee member (dgc): Murray, Dennis, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Many facilities attempt to alleviate the risk of chronic stress in captivity by providing environmental enrichment shown to minimize behavioural disorders and stress in several species. One potential form of enrichment used in zoos is training animals to perform rides for guests, however, the effect of this activity on the welfare of individual animals has never been examined. I validated the use of saliva for assessing stress in dromedary camels (Camelus dromedarius) an animal commonly used for rides. I then measured variation in salivary cortisol in four male camels during animal rides for guests at the Toronto Zoo. The camels were sampled during the ride season (from June to August) using four treatments: 1) in their pasture, 2) at the ride area not performing rides, 3) performing a low number of rides (n=50/day) and 4) performing a high number of rides (n=150/day). Furthermore, samples were taken before and after the ride season for comparison. There was a significant difference between the post-ride season treatment and the three treatments involving guest presence during the ride season (ride area, low rides, high rides. This indicates that performing rides is not a stressful experience based on the stress metrics I used, and suggests that rides may be a form of enrichment for dromedary camels.

Author Keywords: ACTH challenge, animal welfare, camels, environmental enrichment, salivary cortisol, stress

2014

Breeding Phenology and Migration Habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands, Canada

Type:
Names:
Creator (cre): Mackellar, Hannah, Thesis advisor (ths): Nol, Erica, Thesis advisor (ths): Brown, Glen, Degree committee member (dgc): Burness, Gary, Degree committee member (dgc): Smith, Paul, Degree granting institution (dgg): Trent University
Abstract:

Understanding breeding and migration habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands is important for the conservation of this population. I monitored Whimbrel at two breeding sites: the Churchill region of Manitoba and Burntpoint, Ontario. Annual average nest initiation timing was highly variable and successful nests were initiated significantly earlier than those that failed. Although nests were initiated significantly earlier at Burntpoint than Churchill, annual nest success quantified in program R MARK was similar across sites. Observed nest success rates were lower than historical records and most failure was due to predation. Annual nest survival varied widely and I used a generalized linear model to relate annual nest survival to annual average weather conditions. I observed weak relationships between annual nest survival and weather conditions in the northbound staging grounds. I tracked post-breeding migratory movements using the MOTUS radio telemetry system and observed consistent use of the mid-Atlantic coast of the United States during migration, especially among birds emerging from Churchill. In Burntpoint, I observed more variability in post-breeding migratory trajectories and significantly earlier post-breeding departure as compared to Churchill. The results of my study suggest differences in breeding and migration habits exist across nearby breeding populations, indicating that there is a need for population-specific conservation approaches for this declining species.

Author Keywords: Migration, Movement Ecology, Nesting Ecology, Nest Success, Shorebird conservation, Whimbrel

2020

Habitat Preferences and Feeding Ecology of Blackfin Cisco (Coregonus nigripinnis) in Northern Algonquin Provincial Park

Type:
Names:
Creator (cre): Bell, Allan Henry, Thesis advisor (ths): Ridgway, Mark, Degree committee member (dgc): Wilson, Chris, Degree committee member (dgc): Fox, Michael, Degree granting institution (dgg): Trent University
Abstract:

Blackfin Cisco (Coregonus nigripinnis), a deepwater cisco species once endemic to the Laurentian Great Lakes, was discovered in Algonquin Provincial Park in four lakes situated within a drainage outflow of glacial Lake Algonquin. Blackfin habitat preference was examined by analyzing which covariates best described their depth distribution using hurdle models in a multi-model approach. Although depth best described their distribution, the nearly isothermal hypolimnion in which Blackfin reside indicated a preference for cold-water habitat. Feeding structure differentiation separated Blackfin from other coregonines, with Blackfin possessing the most numerous (50-66) gill rakers, and, via allometric regression, the longest gill rakers and lower gill arches. Selection for feeding efficiency may be a result of Mysis diluviana affecting planktonic size structure in lakes containing Blackfin Cisco, an effect also discovered in Lake Whitefish (Coregonus clupeaformis). This thesis provides insight into the habitat preferences and feeding ecology of Blackfin and provides a basis for future study.

Author Keywords: allometric regression, blackfin cisco, habitat, hurdle models, lake whitefish, mysis

2017

Stress Axis Function and Regulation in New World Flying Squirrels: An Assessment of Acute Stress Response, Negative Feedback, and the Role of Corticosteroid-binding Globulin

Type:
Names:
Creator (cre): Desantis, Lanna Marie, Thesis advisor (ths): Bowman, Jeff, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Rafferty, Steven, Degree committee member (dgc): Wilson, Paul, Degree committee member (dgc): Boonstra, Rudy, Degree committee member (dgc): Vijayan, Mathilakath M, Degree granting institution (dgg): Trent University
Abstract:

Across vertebrate taxa, the hypothalamic-pituitary-adrenal axis (or the stress axis) is highly conserved, and is central to vertebrate survival because it allows appropriate responses to psychological stressors. Habitat shapes successful physiological and ecological strategies, and to appreciate how individual species respond to stressors in their environment, it is essential to have a thorough knowledge of the basic stress physiology of each species. In this dissertation, I studied the functioning and evolution of the stress physiology of New World flying squirrels. I showed that baseline, circulating cortisol levels in northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels are some of the highest ever reported for mammals, indicating that their stress axes operate at a higher set point than most other species. I also assessed other aspects of their acute stress response, including free fatty acid and blood glucose levels, and indices of immune function, and showed that the flying squirrels' physiological reaction to stressors may differ from that of other mammals. Using immunoblotting, I found that corticosteroid-binding globulin (CBG) expression levels in flying squirrels appeared to be higher than previously reported using alternative methods. I also concluded however, that these levels did not appear to be high enough to provide their tissues with the protective CBG-bound buffer from their high circulating cortisol concentrations experienced by the majority of vertebrates. Thus, this arm of cortisol regulation within the flying squirrel stress axes may be weak or non-existent. Following this, I focused on southern flying squirrels and showed evidence that the second arm of cortisol regulation — the negative feedback mechanism at the level of the brain — functions effectively, but that this species is glucocorticoid resistant. Their tissue receptors appear to have a reduced affinity for cortisol, and this affinity may change seasonally to allow for the onset of other biological processes required for survival and reproduction. Due to their distinctive stress physiology, northern and southern flying squirrels may provide comparative physiologists with model systems for further probing of the function and evolution of the stress axis among vertebrates.

Author Keywords: corticosteroid-binding globulin, flying squirrel, Glaucomys, glucocorticoids, physiological ecology, stress physiology

2017

From Foraging to Farming: Changing Diet-Breadth and the Middle to Late Woodland Transition in Southcentral Ontario (ca. 1450–650 B.P.)

Type:
Names:
Creator (cre): Worby, Daniel, Thesis advisor (ths): Morin, Eugene, Degree committee member (dgc): Conolly, James, Degree committee member (dgc): Williams, Jocelyn, Degree granting institution (dgg): Trent University
Abstract:

This study examines foraging strategies during the Middle Woodland Period's Sandbanks Phase (A.D. 700–1000) on Boyd Island, Pigeon Lake, Ontario. The faunal remains analyzed in this study were recovered from a site associated with the procurement of aquatic and terrestrial taxa. Detailed taphonomic analyses have revealed that the Boyd Island faunal remains were affected by weathering and human transport decisions. White-tailed deer was the most frequently acquired prey at Boyd Island, followed by black bear. Using the central place forager prey choice model as a framework, the analysis of diet breadth and carcass transport patterns suggests that most animal resources were acquired from both aquatic and terrestrial habitats, at moderate distances from the site. Incomplete carcasses of large game appear to have been transported away from the site, where they were subsequently processed for provisioning or consumption. Comparisons with other Sandbanks faunal assemblages and those dating to later periods indicate significant differences in terms of taxonomic composition, while continuing to emphasize the use of fish. It is suggested that the Middle Woodland foragers adopted subsistence strategies focusing on the exploitation of local habitats in which productivity may have been enhanced through niche construction associated with the low-level food production activities.

Author Keywords: animal resource exploitation, archaeozoology, foraging theory, Middle Woodland, niche construction theory, southcentral Ontario

2018

The third wheel: How red squirrels affect the dynamics of the lynx-snowshoe hare relationship

Type:
Names:
Creator (cre): Chan, Kevin Wai, Thesis advisor (ths): Murray, Dennis L, Degree committee member (dgc): Feng, Wenying, Degree committee member (dgc): Row, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Population cycles are regular fluctuations in population densities, however, in recent years many cycles have begun to disappear. With Canada lynx this dampening has also been seen with decreasing latitude corresponding to an increase in prey diversity. My study investigates the role of alternate prey on the stability of the lynx-hare cycle by first comparing the functional responses of two sympatric but ecologically distinct predators on a primary and alternate prey. I then populated a three species predator-prey model to investigate the role of alternate prey on population stability. My results showed that alternate prey can promote stability, though they are unlikely to "stop the cycle". Furthermore, stability offered by alternate prey is contingent on its ability to increase intraspecific competition. My study highlights that population cycles are not governed by a single factor and that future research needs to be cognizant of interactions between alternate prey and intraspecific competition.

Author Keywords: alternate prey, Canis latrans, functional response, Lepus americanus, Lynx canadensis, Tamiasciurus hudsonicus

2017

Nutrient Metabolism of an Aquatic Invertebrate and its Importance to Ecology

Type:
Names:
Creator (cre): Wagner, Nicole D., Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Kapron, Carolyn, Degree committee member (dgc): Brunetti, Craig, Degree granting institution (dgg): Trent University
Abstract:

Aquatic consumers frequently face nutritional limitation, caused in part, by imbalances between the nutrients supplied by primary producers and the metabolic demands of the consumers. These nutritional imbalances alter many ecological processes including consumer life-history traits, population dynamics, and food web properties. Given the important ecological role of organismal nutrition, there is a need to have precise and specific indicators of nutritional stress in animals. Despite this need, current methods used to study nutrition are unable to distinguish between different types of nutritional limitation. Here I studied nutritional metabolism in the freshwater zooplankter, Daphnia. A greater understanding of nutritional metabolism would allow for the development of dietary bio-indicators that could improve the study of the nutritional ecology of animal consumers. Specifically, I addressed the question: What affects the biochemical composition of a generalist aquatic consumer? My overall hypothesis was that the quantity and quality of the diet affects the biochemical composition in a nutrient specific manner. To test this hypothesis, I examined various response variables involved in nutrient metabolism such as alkaline phosphatase activity, whole metabolome, and free amino acid composition. For each response variable, I grew Daphnia under various nutritional stressors and determined if responses are nutrient specific or are a general stress response. I found the current method of measuring alkaline phosphatase was not a phosphorus specific indicator, as activity increased in all nutrient stressed treatments. Analyzing the whole metabolome resulted in nutritional stressors being separated in multivariate space, with many identified metabolites being significantly different from nutrient rich Daphnia. Upon further examination the daphnids free amino acids profiles are caused by differences between the supply of amino acids from the algae and the demand within the Daphnia. These differences in supply and demand resulted in the ability to classify the nutritional status of Daphnia with the use of discriminant analysis, a classification multivariate model. In addition to a deeper understanding and advanced knowledge of the physiological changes caused by nutrient limitation, this research has provided strong evidence for the application of nutritional biomarkers/profiles to identified the nutritional status of Daphnia.

Author Keywords: Bio-indictor, Ecological stoichiometry, Metabolism, Nutritional limitation, Nutritional status

2015

Stopover Movement Patterns by Blackpoll and Canada Warblers Across Southeastern Canada During Fall Migration: An Automated Radio-Telemetry Study

Type:
Names:
Creator (cre): Parada Isada, Alain, Thesis advisor (ths): Nol, Erica, Thesis advisor (ths): Taylor, Phil D, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Stopover ecology is a topic that surges in relevancy as choices made by migrants during stationary periods (stopover sites) may not only have important individuals' fitness consequences but also can affect population dynamics. I used MOTUS automated telemetry array to study fall stopover duration of Blackpoll Warbler (BLPW) and departure decisions of BLPW and Canada Warbler (CAWA) in relation to various predictors. I affixed radio-transmitters on 55 BLPWs and 32 CAWAs at two banding stations in Ontario in September-October 2014-2015. Radio-tagged individuals were tracked through the MOTUS network across southeastern Canada. I developed models relating age class, fat score, Julian date and stopover movement types to Blackpolls' stopover duration. I also examined whether there were species-related differences of wind selectivity when resuming migration. No explanatory variable significantly influenced BLPW's stopover duration. Both species tended to depart under increased tailwind assistance, but with no difference in the effect of wind conditions between the two species. This study provides further evidence supporting the relevance of local wind conditions as a key factor affecting the departure likelihood, especially when migrating birds face an ecological barrier.

Author Keywords: Cardellina canadensis, departure decisions, minimum stopover length, MOTUS, overland fall migration, Setophaga striata

2017