Angoh, Siow Yan Jennifer
Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding's turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding's turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles' home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding's turtles and spotted turtles suggests that these habitats do not automatically constitute "unsuitable habitats" for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles.
Author Keywords: Blanding's turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca