Freeland, Joanna

Within-Generation and Transgenerational Thermal Plasticity in Cold-Adapted Salmonids of the Genus Salvelinus

Type:
Names:
Creator (cre): Penney, Chantelle, Thesis advisor (ths): Wilson, Chris C, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Scott, Graham, Degree committee member (dgc): Craig, Paul, Degree committee member (dgc): Freeland, Joanna, Degree granting institution (dgg): Trent University
Abstract:

Climate change is a major conservation concern, especially for many cold-adapted species. The rate of warming due to climate change will likely outpace adaptive responses, and many populations will likely need to rely on phenotypic plasticity to cope with environmental warming. It is currently unclear whether plasticity in physiological responses to warming will be sufficient to offset the negative consequences of chronic environmental warming in ectotherms. I studied within-generation and transgenerational plasticity in two cold-adapted species of fishes, lake trout (Salvelinus namaycush) and brook trout (S. fontinalis), following temperature acclimation. Adults of both species were acclimated to either cold or warm temperatures and offspring were generated using a fully factorial breeding design, whereby the family thermal histories included crosses made within each temperature treatment and bidirectional crosses between temperatures. Offspring families were subdivided into two groups and acclimated to either warm or cold temperatures, so that offspring thermal experience matched or mismatched that of one or both parents. Offspring metabolic rate and critical thermal maximum during an acute thermal challenge were measured for both species. Limited transgenerational plasticity was detected in both species, but had a lesser effect than within-generationacclimation. In brook trout, the paternal contribution was greater than the maternal contribution. In lake trout, a mismatch in thermal acclimation, where the offspring were cold-acclimated but the parents warm-acclimated, resulted in elevated offspring metabolic rate without a corresponding increase in growth, suggesting that a mismatch in temperatures across generations could be detrimental to offspring. Using RNA-sequencing, transgenerational plasticity was linked to differential gene expression in the liver of lake trout offspring, in that genes were differentially expressed depending on the parental acclimation temperatures. Within-generation warm acclimation had the greatest effect on gene expression profile of offspring, with more genes differentially expressed under conditions of within-generation warm acclimation compared with transgenerational warm acclimation. Although it has been suggested that transgenerational plasticity may help to buffer the impact of warming due to climate change, my work implies that transgenerational plasticity, like within-generation plasticity, will be insufficient for these two species of cold-adapted salmonids to cope with climate change.

Author Keywords: Brook trout, Climate change, Lake trout, Phenotypic plasticity, Thermal tolerance, Transgenerational plasticity

2024

Impacts of invasive hybrid cattail Typha x glauca and reduced marsh interspersion on muskrats (Ondatra zibethicus) in North America

Type:
Names:
Creator (cre): Melvin, Gregory Paul, Thesis advisor (ths): Bowman, Jeff, Degree committee member (dgc): Freeland, Joanna, Degree committee member (dgc): Metcalfe, Robert, Degree granting institution (dgg): Trent University
Abstract:

Muskrat populations are declining across North America. In recent decades, hybrid cattail Typha x glauca has been invading wetlands in North America. This invasion is degrading wetland habitat, leading to reduced interspersion of water and vegetation. Muskrats are wetland-obligates and their populations are positively linked to marsh interspersion. Therefore, muskrat populations may be declining due to the invasion of T. x glauca and subsequent reduction in interspersion. To test this hypothesis, I first sampled marshes across south-central Ontario, comparing muskrat densities with the relative frequency of T. x glauca and the degree of interspersion. Second, I measured intensity of use by muskrats in a large wetland along a gradient of interspersion. My findings suggest that reduced interspersion may be contributing to muskrat population declines, but it is unclear to what degree T. x glauca is responsible. Further research is needed to understand the effects of wetland invasions on muskrat populations.

Author Keywords: invasive species, Ondatra zibethicus, Southern Ontario, Typha x glauca, wetlands, wildlife conservation

2024

Accuracy and reliability of microscopic characteristics to identify Typha species and their hybrids

Type:
Names:
Creator (cre): Kowalczyk, Olivia Samantha, Thesis advisor (ths): Freeland, Joanna, Thesis advisor (ths): Dorken, Marcel, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Advanced generation/backcrossed (non-F1) hybrids can be challenging to identify when their traits are similar to those of parental taxa, F1 hybrids, or both. This is particularly evident in the North American hybrid zone involving Typha latifolia, T. angustifolia, F1 T. × glauca and non-F1 hybrids. Cattails are challenging to differentiate based on gross morphological characteristics. Microscopic characteristics in female inflorescences have not been previously studied to differentiate parental taxa from non-F1 hybrids. To investigate whether researchers can use microscopic floret and bracteole characteristics for taxonomic identification, I compared pistillate flower length, bracteole length and width, and bracteole colour among taxa. I found that floret and bracteole characteristics can be useful for identifying T. latifolia but cannot accurately differentiate T. angustifolia and F1 T. × glauca from non-F1 hybrids. Further, a flowering bias can lead to the underestimation of the frequency of T. latifolia when using floral characters to examine the relative abundance of cattail taxa.

Author Keywords: advanced-generation hybrids, backcrossed hybrids, invasive species, morphology, species identification, Typha spp.

2024

Range Expansion of Invasive Hybrid Cattails (Typha × Glauca) in the Prairie Pothole Region

Type:
Names:
Creator (cre): Joyee, Sanjuti Deb, Thesis advisor (ths): Dorken, Marcel, Thesis advisor (ths): Freeland, Joanna, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Wetlands are highly susceptible to the invasion of invasive species. The invasive hybrid cattail (Typha × glauca) is prevalent in the southeastern Prairie Pothole Region (PPR) wetlands. However, concerns arise about its recent proliferation in the northwestern PPR without maternal T. angustifolia. To determine taxonomic distribution, I used species-specific PCR-RFLP and microsatellite markers for genotyping 245 samples from 50 northwest PPR sites. I found 75% T. latifolia, 7% T. angustifolia, 16% T. × glauca, and 2% backcrossed or advanced-generation hybrids. F1 T. × glauca has expanded in western PPR without its mother species, and the low occurrence of later-generation hybrids indicates their recent range expansion. Additionally, T. angustifolia offspring make fewer hybrids, which suggests that reproductive barriers may limit hybridization between parental species. This study highlights the vulnerability of prairies to cryptic invasions by Typha hybrids, and early detection of invasive species is a critical factor in wetland management success.

2024

Prey abundance and habitat during the breeding season for Piping Plovers in the Ontario Great Lakes region

Type:
Names:
Creator (cre): Steadman, Elizabeth Amber, Thesis advisor (ths): Nol, Erica, Degree committee member (dgc): Smith, Paul A, Degree committee member (dgc): Freeland, Joanna, Degree granting institution (dgg): Trent University
Abstract:

Similar to other shorebird trends around the world, the Piping Plover population (Charadrius melodus circumcinctus) is projected to decline if concerted conservation efforts are relaxed. To date, there is insufficient understanding of the connection between habitat type, prey abundance, and chick behaviour of the Piping Plover breeding population in Ontario. The aim of my thesis was to gain knowledge about prey abundance at recent and historic breeding locations, understanding how habitat influences prey abundance and chick behaviour across the Piping Plover breeding range in Ontario's Great Lakes. The objective of my first study was to understand prey abundance across the breeding region Great Lakes of Ontario from 2018-2019, including occupied and unoccupied sites, and to quantify variation among habitats and periods of reproduction. To evaluate resources, I sampled 17 locations to compare prey abundance using invertebrate traps (n= 3,507). Sampling took place over the reproductive periods of nest initiation, post-hatch, and fledging and in four habitat types of shoreline, wrack, berm, and back dune. Occupied breeding sites had higher prey abundances, and different assemblages of invertebrate prey than unoccupied sites. Additionally, breeding sites had higher prey abundance during nest initiation and supported higher amounts of prey in shoreline and wrack habitat. The objective of my second study was to understand how habitat types influence chick behaviour. To evaluate behaviour-habitat trends, instantaneous chick observations were recorded at the four nest sites from the post-hatch to fledging stages. In total there were 23 fledged chicks that we observed across the two years. Chicks in this study spent 60.9% of their time foraging, 11.9% of the time displaying alert behaviour, 21.4% of their time resting or being brooded, and 5.9% of their time preening. Chicks spent a large proportion of time foraging in the shoreline, resting in the back dune, and alert in berm habitat. The frequency of these alert, defensive behaviours differed among sites, with Sauble Beach chicks spending more time in defensive behaviours compared to other sites. I concluded that in both nesting and brood-rearing periods, habitat is selected non-randomly by adult and young Piping Plovers to maximize access to invertebrate prey for growth and survival. Access by chicks to the most productive habitats should be considered in local management decisions.

Author Keywords: chick behaviour, endangered, Great Lakes Region, habitat, Piping Plovers, prey abundance

2022

Comparative Evaluation of Effective Population Size Genetic Estimation Methods in Wild Brook Trout (Salvelinus fontinalis) Populations

Type:
Names:
Creator (cre): Alshamlih, Mohammed M., Thesis advisor (ths): Wilson, Chris, Degree committee member (dgc): Freeland, Joanna, Degree committee member (dgc): Kyle, Chris, Degree granting institution (dgg): Trent University
Abstract:

Effective population size (Ne) is a key concept in population genetics, evolutionary biology and conservation biology that describes an important facet of genetic diversity and the capacity of populations to respond to future evolutionary pressures. The importance of Ne in management and conservation of wild populations encouraged the development of numerous genetic estimators which rely on a variety of methods. Despite the number and diversity of available Ne methods, however, tests of estimator performance have largely relied on simulations, with relatively few tests based on empirical data. I used well-studied wild populations of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario as a model system to assess the comparative performance of multiple Ne estimation methods and programs, comparing the resultant Ne estimates against demographic population size estimates.

As a first step, the genetic diversity and ancestry of wild brook trout populations was determined using 14 microsatellite loci. Genetic structure of brook trout populations showed variable contributions from historical supplemental stocking and also identified localized gene pools within and between watersheds, reflecting variable levels of connectivity and gene flow. Once the genetic ancestry and connectivity of populations had been resolved, single sample (point) and two samples (temporal) genetic estimators were used to estimate Ne of populations with pure native ancestry. Values obtained from genetic estimators utilizing both methods were variable within as well as among populations. Single sample (point) estimators were variable within individual populations, but substantially less than was observed among the temporal methods. The ratios of Ne to the estimated demographic population size (N) in small populations were substantially higher than in larger populations. Variation among estimates obtained from the different methods reflects varying assumptions that underlay the estimation algorithms. This research further investigated the effect of sampling effort and number of microsatellite loci used on Ne values obtained using the linkage disequilibrium (LD) estimation method. Ne estimates varied substantially among values generated from subsets of loci and genotyped individuals, highlighting the necessity for proper sampling design for efforts aiming to measure Ne. Despite the variation observed among and within estimation methods, the Ne concept is a valuable for the conservation and management of both exploited and endangered species.

Author Keywords: Brook Trout, Effective population size, Genetic Diversity, Genetic Structure

2014

Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles

Type:
Names:
Creator (cre): Angoh, Siow Yan Jennifer, Thesis advisor (ths): Davy, Christina, Thesis advisor (ths): Freeland, Joanna, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding's turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding's turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles' home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding's turtles and spotted turtles suggests that these habitats do not automatically constitute "unsuitable habitats" for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles.

Author Keywords: Blanding's turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca

2019

The Assessment of Potential Threats to Eastern Flowering Dogwood (Cornus florida) in Southern Ontario

Type:
Names:
Creator (cre): Mitchell, Emily, Thesis advisor (ths): Freeland, Joanna, Thesis advisor (ths): Dorken, Marcel, Degree committee member (dgc): Wilson, Chris, Degree granting institution (dgg): Trent University
Abstract:

In Canada, eastern flowering dogwood (Cornus florida L.) is an endangered tree that occurs only in the Carolinian forest of southern Ontario. Threats to this species include habitat fragmentation and the fungal pathogen dogwood anthracnose (Discula destructiva). I conducted a population genetic analysis using seven nuclear microsatellite markers to determine if fragmented populations are genetically isolated from one another and have low levels of genetic diversity. Genetic comparisons suggest on-going dispersal among sites and relatively high genetic diversity within most sites; however, smaller populations and younger trees were less genetically diverse. I also used linear mixed effects models to assess potential relationships between several ecological variables and the prevalence of dogwood anthracnose. Disease severity was higher in trees on shallow slopes and in larger trees; the latter also had higher likelihood of infection. Insights from this study will be important to incorporate into future management strategies.

Author Keywords: Cornus florida, Discula destructiva, dogwood anthracnose, Eastern flowering dogwood, endangered, population genetics

2021

The Biology and Management of Stratiotes Aloides in the Trent River, Ontario

Type:
Names:
Creator (cre): Canning, Robert, Thesis advisor (ths): Sager, Eric, Degree committee member (dgc): Whillans, Tom, Degree committee member (dgc): Freeland, Joanna, Degree granting institution (dgg): Trent University
Abstract:

Invasive aquatic plants can create negative ecological, economic and social impacts when they displace local vegetation, interfere with shipping and navigation and inhibit water-based recreational activities. In 2008, the first North American occurrence of the invasive plant Stratiotes aloides (Water soldier) was identified in the Trent River, Ontario. This research measured offset photosynthesis and turion germination to determine the light compensation point (5.2-5.4m) and maximum depth of colonization (4-6m) for S. aloides propagules using in situ incubations and controlled growth experiments. The effects of spring and fall chemical (Diquat) and physical (hand raking) treatments on S. aloides biomass, local macrophyte recovery and community dynamics in the Trent River were also measured. The target of a 75% minimum reduction in S. aloides biomass was not attained using any of the treatment methods and no perceivable recovery of the local plant community was observed. Significant S. aloides regrowth was recorded for both treatment methods regardless of application timing.

Author Keywords: herbicide, invasive species, macrophyte, photosynthesis, propagule

2017

Evaluating Environmental DNA (eDNA) Detection of Invasive Water Soldier (Stratiotes Aloides)

Type:
Names:
Creator (cre): Marinich, Allison, Thesis advisor (ths): Freeland, Joanna, Thesis advisor (ths): Wilson, Chris, Degree committee member (dgc): Crins, Bill, Degree granting institution (dgg): Trent University
Abstract:

In 2008, the first North American water soldier (Stratiotes aloides) population was discovered in the Trent River, Ontario. Water soldier is an invasive aquatic plant with sharp, serrated leaves that has the potential to spread rapidly through dispersed vegetative fragments. Although it is too late to prevent water soldier establishment in the Trent River, its local distribution remains limited. In this study, environmental DNA (eDNA) was explored as a potential tool for early detection of water soldier. Species-specific markers were designed from chloroplast DNA regions matK and rbcL, and a qPCR assay with rbcL primers yielded the most sensitive detection of water soldier eDNA. Positive detections were obtained from six of 40 sampling locations, of which five were collected in Seymour Lake, an area with large patches of water soldier. As water soldier plants were known to be present at these sites, high eDNA concentrations were expected. The sixth positive detection from Trent Lock 5 (50 km downstream of Lake Seymour) was unexpected as it was obtained at a site with no water soldier sightings. This is one of the first studies to demonstrate the effectiveness of eDNA detection from aquatic plants.

Author Keywords: aquatic plant, eDNA, environmental DNA, invasive species, Stratiotes aloides, water soldier

2017