Zhu, Yu
In situ measurements of trace metal species in the Athabasca and Mackenzie Rivers using diffusive gradient in thin films (DGT) devices
This study assesses the bioavailable metal (Cu, Ni, Zn, Pb) species in the Athabasca-Mackenzie watersheds using diffusive gradient in thin films (DGT) devices. Metal toxicity is not only based on the concentration of metal in natural waters, but also on the nature of metal species. Four main forms in aquatic systems are: free ion, inorganic species, DOM bound (humic) species and metal colloidal species. The free ion and inorganic species and very small humic species are known as DGT-labile species and, are considered to be more bioavailable to micro-organisms due to the size and thus may be toxic to microorganisms. In this study, DGT devices were applied to (1) monitor the DGT-labile metal species in the lower Athabasca River and the Mackenzie River watershed and (2) assess the DGT-labile metal concentrations on temporal and spatial scales. In the lower Athabasca River, comparison between the DGT results and the Windermere Humic Acid Model (WHAM) calculation indicated good agreements for all metals when the precipitated iron(III) hydroxide was assumed as an active binding surface. No significant variations in labile species were found over 2003-2012 (RAMP database) despite the development of oil sands. In the Mackenzie River, no significant difference in DGT-labile metal concentrations and DOC concentrations was found in yearly basis 2012-2014. Only DOC was lower in August (6.98 and 3.85 ppm, respectively; p< 0.05) due to dilution from heavy rain events. Spatially, DGT-labile Cu and Ni in the downstream Mackenzie River were higher than upstream (1.79 and 0.58 ppb for Cu, 1.68 and 0.77 ppb for Ni, 4.06 and 6.91 ppm for DOC; p < 0.05). Overall the in situ measurements of metals constitute a benchmark for future studies in water quality and be helpful in environmental management in Alberta and the Northwest Territories in Canada.
Author Keywords: Athabasca River, DGT, Mackenzie River, Speciation, Trace Metal, WHAM