Smith, Edward Philip
Short-term biogeochemical response of hardwood forest soils to wood ash additions in central Ontario
The accelerated recovery of base-poor soils from the legacy effects of acidic deposition may be possible by applying industrial wood ash as a soil amendment. Wood ash may be an effective soil amendment due to its high alkalinity and concentrations of several essential nutrients, such as calcium, magnesium, potassium, and phosphorus, that are retained after the volatilization of the parent material. However, wood ash can also contain trace amounts of metals that could be released into the soil and soil solution. The short-term (<3 years) biogeochemical response of soils, microbial communities, and sugar maple (Acer saccharum Marsh.) trees were assessed following wood ash application at Porridge Lake, Ontario. The study design consisted of five blocks containing three treatment plots each (2.5, 5.0, 7.5 Mg ha-1) and a control. Soil solution pH, base cation, and trace metal concentrations were monitored for three years, using tension lysimeters at depths of 30 and 60 cm and zero-tension lysimeters for forest floor percolate within each plot. In the last year of the trial, soil, foliage, and fine root samples were collected and analyzed for trace elements. Also, soil samples were analyzed for the abundance of 16S and ITS DNA through metabarcoding to ascertain the microbial response to wood ash. Significant changes in soil solution pH were measured within the forest floor horizon in the first year of the trial. Significant increases in calcium (Ca), magnesium (Mg) and calcium/aluminum (Ca/Al) ratios were also observed in the second year of the trial, along with decreases in dissolved organic carbon (DOC), sulphate (SO4) and nitrate (NO3) in the LFH horizon. By the third year of the trial, significant increases in soil solution pH and potassium (K) concentrations and decreases in Al were observed to a depth of 30 cm. Changes in trace metal concentrations in soil water were notably variable, with concentrations of chromium, copper, lead, nickel, and selenium remaining unresponsive, whereas concentrations of cadmium, manganese and zinc decreased by the third year. The metalloid arsenic showed a significant increase in the third year of the trial but remained below regulatory guidelines, similar to all other trace metals. Soil measurements conducted in the third year of the trial showed positive pH responses in the FH horizon and increases in Ca and Mg in the Ah and Bm soil horizons, but foliar base cation and metal concentrations were unchanged. Diversity analysis on the soil prokaryotic and eukaryotic groups indicated increased bacterial alpha diversity in the FH horizon and bacterial dominance in the litter horizon. Analysis of relative abundance at the phylum level for prokaryotes and at the order for eukaryotes did not indicate any compositional shifts due to the wood ash treatments. Changes in the length and diameter of sugar maple and mycorrhizal fine root may point to pH shock being an issue at higher ash doses. The results from this study indicate that wood ash has a strong ameliorative effect on soil properties and does not pose a risk to soil communities.
Author Keywords: DNA, mycorrhizae, soil acidication, soil amendments, soil solution, sugar maple