Biology

An Evaluation of Wastewater Treatment by Ozonation for Reductions in Micropollutant Toxicity to Fish

Type:
Names:
Creator (cre): Maya, Nicholas, Thesis advisor (ths): Metcalfe, Chris D, Degree committee member (dgc): Yargeau, Viviane, Degree committee member (dgc): Wallschläger, Dirk, Degree granting institution (dgg): Trent University
Abstract:

Micropollutants are discharged into the aquatic environment with industrial and domestic wastewater and these compounds may cause toxic effects in aquatic organisms. In this study, the toxic effects to fish of micropollutants extracted from ozonated and nonozonated municipal wastewater effluent (MWWE) were measured in order to assess the effectiveness of ozonation in reducing toxicity. Juvenile rainbow trout (Oncorhynchus mykiss) injected with extracts prepared from ozonated MWWE had significantly reduced induction of plasma vitellogenin (VTG), significantly reduced hepatic total glutathione (tGSH) levels and an elevated oxidized-to-total glutathione (GSSG-to-tGSH) ratio. Exposure of Japanese medaka (Oryzias latipes) embryos to extracts prepared from both ozonated and non-ozonated MWWE resulted in elevated developmental toxicity in both treatment groups. These results indicate that wastewater treatment by ozonation reduces the estrogenicity of wastewater, but treatment may induce oxidative stress and embryonic developmental toxicity due to the production of toxic by-products.

Author Keywords: Estrogenicity, Micropollutants, Oxidative stress, Ozonation, Toxic by-products, Wastewater

2016

Elemental Variation in Daphnia: Nutritional, Genetic, and Environmental Factors

Type:
Names:
Creator (cre): Prater, Clay, Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Murray, Dennis, Degree committee member (dgc): Wilson, Chris, Degree granting institution (dgg): Trent University
Abstract:

Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress.

Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton

2016

Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin

Type:
Names:
Creator (cre): Lukaszewicz, Brian, Thesis advisor (ths): Rafferty, Steven P, Degree committee member (dgc): Saville, Barry J, Degree committee member (dgc): Yee, Janet, Degree granting institution (dgg): Trent University
Abstract:

The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine's role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket.

Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis

2016

Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)

Type:
Names:
Creator (cre): Hoffman, Jordan Michael, Thesis advisor (ths): White, Bradley N, Degree committee member (dgc): Nocera, Joe, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct.

Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics

2015

An Assessment of Spatial Trends in the Accumulation of Oil Sands Related Metals in the Clearwater River Valley and Temporal Trends in Six Northern Saskatchewan Lakes

Type:
Names:
Creator (cre): MacDermid, Findlay H., Thesis advisor (ths): Dillon, Peter, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Ahearne, Julian, Degree granting institution (dgg): Trent University
Abstract:

The objective of this thesis was to assess current spatial trends and historic trends in the accumulation of trace metals related to the Athabasca Oil Sands Region (AOSR). The AOSR hosts some of the largest industrial developments in Canada, yet relatively little is known about the transport and fate of trace metal emissions from the region – particularly in the relatively remote areas to the east of the AOSR. Lichens are widely used as biomonitors and are employed in this thesis to assess the range of metals deposition within the Clearwater River and Athabasca River Valleys. Lake sediment cores can retain a historical record of the long-range transport and deposition of metals but can also respond to large regional metal emissions sources. This thesis used lake sediment cores to assess temporal trends in metals accumulation in six road accessible lakes in NW Saskatchewan that are likely to be used by local residents. Results show that metal concentrations (V, Co, Cu, Ni, Pb, Zn, Zr and Cd ) in lichen decline exponentially with distance from the AOSR and approach background levels within a few kilometers . Results from lake sediment cores show that there was no evidence that metal concentrations had increased due to industrial activities in the AOSR.

Author Keywords: Air Emissions, Lakes, Lichens, Oil Sands, Saskatchewan, Trace Metals

2016

Impact of Wetland Disturbance on Phosphorus Loadings to Lakes

Type:
Names:
Creator (cre): Pinder, Kieran Chris, Thesis advisor (ths): Eimers, M. C, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Dillon, Peter J, Degree granting institution (dgg): Trent University
Abstract:

Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region.

Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland

2015

Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)

Type:
Names:
Creator (cre): McKay, Michelle Meredith, Thesis advisor (ths): Wilson, Paul J, Thesis advisor (ths): Bowman, Jeff, Degree committee member (dgc): Freeland, Joanna R, Degree granting institution (dgg): Trent University
Abstract:

The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism's ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes.

Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion

2016

Selection on functional genes across a flying squirrel (genus Glaucomys) hybrid zone

Type:
Names:
Creator (cre): Lalor, Jillian L., Thesis advisor (ths): Bowman, Jeff, Thesis advisor (ths): Wilson, Paul J, Degree committee member (dgc): Schulte-Hostedde, Albrecht, Degree committee member (dgc): Murray, Dennis, Degree granting institution (dgg): Trent University
Abstract:

While hybridization between distinct taxa can have undesirable implications, it can also result in increased genetic variability and potentially, the exchange of adaptive genes or traits. Adaptive variation acquired through introgressive hybridization may be particularly advantageous for species facing rapid environmental change. I investigated a novel, climate change-induced hybrid zone between two flying squirrel species: the southern (Glaucomys volans) and northern (G. sabrinus) flying squirrel. I was interested in the occurrence of hybridization and introgression, the type of selective pressures maintaining the hybrid zone and the potential for adaptive introgression. I found relatively low hybridization and introgression frequencies (1.7% and 2.9% of the population, respectively) and no evidence of selection on hybrids or backcrosses in particular environments. I conclude that the data are more consistent with a hybrid zone maintained by endogenous (environment-independent) selection. I tested for adaptive introgression using two functional genes: IGF-1 and CLOCK. I documented intermediate functional allele frequencies in backcrosses compared to parental populations, suggesting the alleles do not confer fitness advantages in backcrosses. Despite lack of evidence for current adaptive introgression, genetic admixture between G. volans and G. sabrinus may provide adaptive potential should these species face more rapid or drastic environmental change in the future.

Author Keywords: adaptive introgression, flying squirrel, Glaucomys sabrinus, Glaucomys volans, hybridization, introgression

2014

Temporo-spatial patterns of occupation and density by an invasive fish in streams

Type:
Names:
Creator (cre): May, Chelsea Marie, Thesis advisor (ths): Fox, Michael G, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Beresford, David V, Degree granting institution (dgg): Trent University
Abstract:

Since its introduction to North America in the 1990s, the Round Goby has spread throughout the Great Lakes, inland through rivers and is now moving into small tributary streams, a new environment for this species in both its native and invaded ranges. I explored density and temporal occupation of Round Gobies in four small streams in two systems in south-central Ontario, Canada in order to determine what habitat variables are the best predictors of goby density. Two streams are tributaries of Lake Ontario and two are tributaries of the Otonabee River, and all of these streams have barriers preventing upstream migration. I found that occupation and density differed between the systems. In the Otonabee River system, Round Gobies occupy the streams year round and the most important factor determining adult density is distance from a barrier to upstream movement, with the entire stream occupied but density highest next to the barriers. In the Lake Ontario system, density is highest at mid-stream and Round Gobies appear to occupy these streams mainly from spring to fall. Adult density in Lake Ontario tributaries is highest in sites with a high percentage of cobble/boulder and low percentage of gravel substrate, while substrate is less important in Otonabee River tributaries. Occupation and density patterns may differ due to contrasting environmental conditions in the source environments and distance to the first barrier preventing upstream movement. This study shows diversity in invasion strategies, and provides insight into the occurrence and movement patterns of this species in small, tributary streams.

Author Keywords: biological invasion, Generalised Additive Mixed Model, habitat, Neogobius melanostomus, Round Goby, stream

2019

Phytohormone-enhanced heavy metal responses in Euglena gracilis: Ni, Pb and Cd uptake and associated hormone and metabolome profiles

Type:
Names:
Creator (cre): Nguyen, Hai, Thesis advisor (ths): Emery, R.J. Neil, Degree committee member (dgc): Saville, Barry, Degree committee member (dgc): Kisiala, Anna, Degree granting institution (dgg): Trent University
Abstract:

Phytohormones, Cytokinin (CK) and Abscisic acid (ABA), are best known for controlling plant growth and stress responses; but they also mediate various developmental perspectives in alga. Yet, their mode of action in algal adaptive strategies to heavy metal responses, their involvement in orchestration of phytohormone crosstalk remain largely unknown and a molecular framework of phytohormone-controlled heavy metal uptake is absent. I found that three metals known globally to contaminate aquatic ecosystems, nickel (Ni), lead (Pb), and cadmium (Cd), cause changes in the levels of endogenous CKs, ABA, auxins, and gibberellins (GAs) in the green alga Euglena gracilis. Exogenous ABA or CK (trans-zeatin) alleviated metal toxicity through improved metal uptake efficiency and the regulation of the endogenous CKs activity profiles and GAs activity. This new evidence suggests that E. gracilis possesses functional phytohormone signals and metabolic pathways that are under metal stress response. Exogenously applied ABA or CK provoked the coordinated activation of metal uptake, likely via enhanced accumulation of metal binding compounds (i.e., proline, glycine, cysteine containing peptides), which are effective for metal sequestration. Using untargeted metabolomics analysis and functional annotation, this thesis further established that, CK and ABA modified pathways and metabolites, which were mainly involved in metal acclimation and resistance. These modified metabolites that were under the influence of phytohormones in algal cells growing under metal stress conditions were associated with: lipid pathways, riboflavin metabolism, biosynthesis of cofactors/vitamin, and carbohydrate metabolism. Bioactive secondary compounds (e.g., terpenoids, alkaloids, flavonoids, carotenoids) were also modified in algal cells treated with phytohormones. The present study highlights that ABA and CKs are important regulators of algal metal accumulation/acclimation strategies based on increased metal uptake, enhanced CK metabolism, regulation of hormonal crosstalk and regulation of some core cellular metabolism pathways, all of which improve metal uptake efficiency. Finally, our results suggest that ABA and CK form a novel strategy for metal bioremediation techniques and for sourcing microalgal value-added metabolites.

Author Keywords: abscisic acid, cadmium, cytokinin, Euglena gracilis, lead, nickel

2021