Nol, Erica
The role of corticosterone in breeding effort and reproductive success in tree swallows
Glucocorticoids (e.g., corticosterone (CORT)) are hypothesized to mediate decisions regarding reproductive investment during breeding, but the directionality of the relationship is not clear. The CORT-fitness hypothesis posits that high levels of CORT arise from challenging environmental conditions in which an individual will conserve resources for future reproduction or self-maintenance, and thus result in lower reproductive success (a negative relationship). In contrast, the CORT-adaptation hypothesis suggests that, during energetically demanding periods, CORT will mediate physiological or behavioural changes that result in increased reproductive investment and success (a positive relationship). Inconsistencies arise due to the various species and life-history stages studied, and the complex interactions between fitness and glucocorticoids. Using an experimental approach, I investigated the relationship between CORT and reproductive success by manipulating baseline CORT levels in female tree swallows Tachycineta bicolor prior to laying using silastic implants. Implants failed to raise CORT levels of females during either incubation or the nestling stage, and maternal treatment had no effect on indices of fitness at either stage. Using a correlative approach, partial support for the CORT-adaptation hypothesis was found: There was a positive relationship between CORT and hatching success. This only occurred when CORT was measured during incubation, when baseline CORT levels may stimulate increased reproductive effort and success. In contrast, during the nestling stage baseline CORT levels were not related to reproductive investment or success. Maternal CORT levels during incubation also did not influence nestling phenotype, although nestling stress CORT levels were higher in individuals that survived to fledging. In conclusion, CORT mediates reproductive effort and success during some breeding stages, but it is still unclear why this is the case and whether this same pattern will prevail in other contexts.
Author Keywords: corticosterone, HPA axis, maternal effects, reproductive success, tree swallow
Detectability and its role in understanding upland sandpiper (Bartramia longicauda) occurence in the fragmented landscape of southern Ontario
Upland Sandpipers (Bartramia longicauda), like many grassland birds, are undergoing population decline in parts of their range. Habitat fragmentation and change have been hypothesized as potential causes of decline. I used citizen-science occurrence data from Wildlife Preservation Canada's Adopt-A-Shrike Loggerhead Shrike (Lanius ludovicianus) program in conjunction with validation surveys, using similar point-count methods, to examine detectability and determine if landscape level habitat features could predict occupancy of Upland Sandpipers in Southern Ontario. In a single season detectability study, I used Wildlife Preservation Canada's survey protocol to determine detectability in sites that were known to be occupied. Detectability was low, with six surveys necessary to ensure detection using a duration of at least 18 minutes early in the breeding season. The proportion of open habitat did not affect detection on the landscape. Using a larger spatial and temporal scale, with five years of citizen-science data, I showed that Annual Crop Inventory data could not effectively predict Upland Sandpiper occupancy. Model uncertainty could be attributed to survey protocol and life history traits of the Upland Sandpiper, suggesting that appropriate survey methods be derived a priori for maximizing the potential of citizen-science data for robust analyses.
Author Keywords: Bartramia longicauda, citizen-science, detection, landscape, occupancy, Ontario
Breeding Phenology and Migration Habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands, Canada
Understanding breeding and migration habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands is important for the conservation of this population. I monitored Whimbrel at two breeding sites: the Churchill region of Manitoba and Burntpoint, Ontario. Annual average nest initiation timing was highly variable and successful nests were initiated significantly earlier than those that failed. Although nests were initiated significantly earlier at Burntpoint than Churchill, annual nest success quantified in program R MARK was similar across sites. Observed nest success rates were lower than historical records and most failure was due to predation. Annual nest survival varied widely and I used a generalized linear model to relate annual nest survival to annual average weather conditions. I observed weak relationships between annual nest survival and weather conditions in the northbound staging grounds. I tracked post-breeding migratory movements using the MOTUS radio telemetry system and observed consistent use of the mid-Atlantic coast of the United States during migration, especially among birds emerging from Churchill. In Burntpoint, I observed more variability in post-breeding migratory trajectories and significantly earlier post-breeding departure as compared to Churchill. The results of my study suggest differences in breeding and migration habits exist across nearby breeding populations, indicating that there is a need for population-specific conservation approaches for this declining species.
Author Keywords: Migration, Movement Ecology, Nesting Ecology, Nest Success, Shorebird conservation, Whimbrel
Passage population size, demography, and timing of migration of Red Knots (Calidris canutus rufa) staging in southwestern James Bay
Many shorebirds rely on small numbers of staging sites during long annual migrations. Numerous species are declining and understanding the importance of staging sites is critical to successful conservation. We surveyed endangered rufa Red Knots staging in James Bay, Ontario during southbound migration from 2009 to 2018. We used an integrated population model to estimate passage population size in 2017 and 2018 and found that up to 27% of the total rufa population staged in James Bay. We also extended the model to incorporate age composition of the passage population. In future applications, this method could improve our understanding of the role of breeding success in population declines. We then estimated annual apparent survival from 2009 to 2018. Survival remained near constant, though lower than estimated elsewhere in the Red Knot range, which may reflect higher permanent emigration rates rather than truly lower survival. This work demonstrates that this northern region is a key staging site for endangered Red Knots and should be included in conservation planning.
Author Keywords: integrated population model, mark-recapture, migratory stopover, shorebirds, species at risk, survival
Roosting selection behaviour of the eastern
As wild turkeys (Meleagris gallopavo silvestris) move farther north, informed management decisions are critical to support the sustainability of this reintroduced species. We tracked roost tree selection and patterns of the network of roost trees, for wild turkeys, over 2 years in Peterborough, ON, using GPS and VHF transmitters. Wild turkeys showed preference for taller and larger roost trees, with winter roosts closer to buildings. The roost network exhibited a scale-free network, meaning certain roosts served as hubs, while other roosts were less frequently used. The fine scale results suggest that roost trees are selected for predator avoidance, and that selection changes with the season, probably because of its influence on foraging ability. At a larger scale, winter roosts were chosen for their proximity to supplemental food sources. These findings demonstrate the dependence of wild turkeys on humans and the supplemental sources we unintentionally provide.
Environmental structure, morphology and spatial ecology of the five-lined skink (Plestiodon fasciatus) at high latitude range limits
Detecting relevant and meaningful patterns from the complex, interconnected network of relationships between organisms and their environment is a primary objective of ecology. Ecological patterns occur across multiple scales of space and time. In this dissertation, I examine aspects of environmental structure that influence a species' distribution and are expressed in that species' population dynamics. I compare the morphology of the five-lined skink (Plestiodon fasciatus) near its high latitude range limits with a lower latitude population and evaluate the economics of their behaviour in the context of its reproductive strategy. I tested the conformity of this species to biogeographical rules postulated by MacArthur, Bergmann, and Rensch. Spatial ecology was investigated in the context of the environmental potential for polygamy proposed by Emlen and Oring (1977) The five-lined skink, Plestiodon fasciatus, conformed to these biogeographic rules. Specifically, abiotic factors were the primary limiting factors affecting distribution at the high latitude range limits of the species; body size was larger in high latitude populations; and the degree of sexual size dimorphism was greater at high latitude than at low latitude. Spatial ecology at the individual scale was influenced by sites with suitable thermal conditions which facilitate the polygynandrous mating system documented in P. fasciatus in high latitude populations. My results confirm the importance of microsites with suitable thermal profiles as key habitat for ectothermic vertebrates at high latitudes. The influence of temperature as a limiting abiotic factor is expressed in population density, body size, spatial ecology, and reproductive strategy of P. fasciatus. Conservation and restoration of high latitude populations of ectothermic vertebrates should focus on ensuring thermal requirements of the species of concern are met before other factors are addressed, as temperature is likely the single most important limiting factor at high latitude range limits.
Author Keywords: biogeography, lizard, Plestiodon fasciatus, range limits, sexual size dimorphism, spatial ecology
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies.
Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
Shorebird Habitat Use and Foraging Ecology on Bulls Island, South Carolina During the Non-Breeding Season
Recent declines in North American shorebird populations could be linked to habitat loss on the non-breeding grounds. Sea-level rise and increased frequency of coastal storms are causing significant erosion of barrier islands, thereby threatening shorebirds who rely on shoreline habitats for foraging. I conducted shorebird surveys on Bulls Island, South Carolina in the winters of 2018 and 2019 and examined habitat selection and foraging behaviour in Dunlin (Calidris alpina), Sanderling (Calidris alba), Semipalmated Plovers (Charadrius semipalmatus), and Piping Plovers (Charadrius melodus). Area, tidal stage, and invertebrate prey availability were important determinants of shorebird abundance, behaviour, and distribution. My study highlights the importance of Bulls Island's habitat heterogeneity to supporting a diverse community of non-breeding shorebirds. Considering both the high rate of erosion and the increased frequency of disturbance along the shoreline of the island, intertidal habitats should be monitored to predict negative effects of changes in habitat composition and area on non-breeding shorebirds.
Author Keywords: foraging behaviour, habitat loss, habitat selection, invertebrate prey, non-breeding, shorebirds
The Effects of Local, Landscape, and Temporal Variables on Bobolink Nest Survival in Southern Ontario
Populations of grassland birds, including the Bobolink (Dolichonyx oryzivorus), are experiencing steep declines due to losses of breeding habitat, land use changes, and agricultural practices. Understanding the variables affecting reproductive success can aid conservation of grassland species. I investigated 1) whether artificial nest experiments accurately estimate the impacts of cattle on the daily survival rate of Bobolink nests and 2) which local, landscape, and temporal variables affect daily survival rate of Bobolink nests in Southern Ontario. I replicated an artificial nest experiment performed in 2012 and 2015 to compare the daily survival rate of artificial and natural nests at multiple stocking rates (number of cattle × days × ha-1). I also monitored Bobolink nests and modeled daily survival rate using local variables (e.g., stocking rate, field use, patch area), landscape variables (e.g., percent forest within 2, 5, and 10 km), and temporal variables (e.g., year, date of season). Results indicate that artificial nest experiments using clay shooting targets overestimated the impacts of stocking rate on the daily survival rate of Bobolink nests. With natural nests, region (confounded by year and field use), stocking rate, and date of season were the strongest predictors of daily survival rate; with stocking rate and date of season both having a negative effect. Management should focus on conserving pastures with low stocking rates (< 40 cattle × days × ha-1), late-cut hayfields, fallow fields, and other grasslands to protect breeding grounds for the Bobolink and other declining grassland bird species.
Author Keywords: Bobolink, Daily survival rate, landscape variables, local variables, Nest survival, temporal variables
Indirect Effects of Hyperabundant Geese on Sympatric-Nesting Shorebirds
Rising populations of Lesser Snow and Ross' geese (hereafter collectively referred to as light geese) breeding in the North American Arctic have caused significant environmental change that may be affecting some populations of nesting shorebirds, which in contrast to geese, have declined dramatically. In this thesis I examine the indirect effects of light geese on sympatric-nesting shorebirds. I first conduct a literature review of the effects of light geese on northern wildlife and outline multiple mechanisms in which geese may affect shorebirds in particular. Using bird survey data collected in plots situated across the Canadian Arctic from 1999 to 2016, I then identify spatial effects of light goose colonies on shorebird, passerine, and generalist predator densities. The densities of cover- nesting shorebirds and passerines were depressed near goose colonies while the densities of open-nesting shorebirds were less so. Next, using habitat data collected at random sites and shorebird nest sites situated at increasing distances from a goose colony on Southampton Island, Nunavut, I outline the effects of geese on shorebird nest site selection. I found that the availability of sedge meadow and amount of lateral concealment increased as a function of distance from goose colony; cover-nesting shorebirds selecting nest sites with less concealment and sedge meadow near the colony. Then, to characterize spatial effects of light geese on predators and risk of predation I used time-lapse cameras and artificial shorebird nests placed at increasing distances from the goose colony. Activity indices of gulls, jaegers, and foxes were all negatively correlated with distance from the goose colony while the reverse was true for artificial nest survival probability. Finally, I relate changes in ground cover to goose use and link these changes to variation in invertebrate communities. I then use DNA metabarcoding to characterize the diet of six shorebird species across study sites and identify inter-site variation in the biomass of dominant shorebird prey items. Prey item biomass was elevated at the two study sites near the goose colony potentially indicating an enhancing effect of goose fecal deposition. Overall, I show that light geese interact with shorebirds in multiple ways and negatively affect their habitat availability, nest site selection, and risk of predation, effects that likely outweigh the positive effects of enhanced prey availability.