Environmental and Life Sciences
The role of Cln5 in autophagy, using a Dictyostelium discoideum model of Batten disease
This thesis investigated the role of the neuronal ceroid lipofuscinosis protein, Cln5, during autophagy. This was accomplished by performing well-established assays in a Dictyostelium cln5 knockout model (cln5-). In this study, cln5- cells displayed a reduced maximum cell density during growth and impaired cell proliferation in autophagy-stimulating media. cln5- cells had an increased number of autophagic puncta (autophagosomes and lysosomes), suggesting that autophagy is induced when cln5 is absent. cln5- cells displayed increased amounts of ubiquitin-positive proteins but had no change in proteasome protein abundance. During the development of cln5- cells, fruiting bodies developed precociously and cln5- slug size was reduced. Lastly, when cln5- cells were developed on water agar containing ammonium chloride (NH4Cl), a lysosomotropic agent, the formation of multicellular structures was impaired, and the small slug phenotype was exaggerated. In summary, these results indicate that Cln5 plays a role in autophagy in Dictyostelium. The cellular processes that regulate autophagy in Dictyostelium are similar to those that regulate the process in mammalian cells. Thus, this research provides insight into the undefined pathological mechanism of CLN5 disease and could identify cellular pathways for targeted therapeutics.
Author Keywords: Autophagy, Batten disease, Cln5, Dictyostelium discoideum, NCL
Breeding Phenology and Migration Habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands, Canada
Understanding breeding and migration habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands is important for the conservation of this population. I monitored Whimbrel at two breeding sites: the Churchill region of Manitoba and Burntpoint, Ontario. Annual average nest initiation timing was highly variable and successful nests were initiated significantly earlier than those that failed. Although nests were initiated significantly earlier at Burntpoint than Churchill, annual nest success quantified in program R MARK was similar across sites. Observed nest success rates were lower than historical records and most failure was due to predation. Annual nest survival varied widely and I used a generalized linear model to relate annual nest survival to annual average weather conditions. I observed weak relationships between annual nest survival and weather conditions in the northbound staging grounds. I tracked post-breeding migratory movements using the MOTUS radio telemetry system and observed consistent use of the mid-Atlantic coast of the United States during migration, especially among birds emerging from Churchill. In Burntpoint, I observed more variability in post-breeding migratory trajectories and significantly earlier post-breeding departure as compared to Churchill. The results of my study suggest differences in breeding and migration habits exist across nearby breeding populations, indicating that there is a need for population-specific conservation approaches for this declining species.
Author Keywords: Migration, Movement Ecology, Nesting Ecology, Nest Success, Shorebird conservation, Whimbrel
Passage population size, demography, and timing of migration of Red Knots (Calidris canutus rufa) staging in southwestern James Bay
Many shorebirds rely on small numbers of staging sites during long annual migrations. Numerous species are declining and understanding the importance of staging sites is critical to successful conservation. We surveyed endangered rufa Red Knots staging in James Bay, Ontario during southbound migration from 2009 to 2018. We used an integrated population model to estimate passage population size in 2017 and 2018 and found that up to 27% of the total rufa population staged in James Bay. We also extended the model to incorporate age composition of the passage population. In future applications, this method could improve our understanding of the role of breeding success in population declines. We then estimated annual apparent survival from 2009 to 2018. Survival remained near constant, though lower than estimated elsewhere in the Red Knot range, which may reflect higher permanent emigration rates rather than truly lower survival. This work demonstrates that this northern region is a key staging site for endangered Red Knots and should be included in conservation planning.
Author Keywords: integrated population model, mark-recapture, migratory stopover, shorebirds, species at risk, survival
Novel Aliphatic Amides from Vegetable Oils as Bio-Based Phase Change Materials
Energy storage efficiency and sustainability require advanced technologies and novel materials. Recently, bio-based phase change materials (PCMs) have received significant attention for thermal energy storage (TES) uses. Vegetable oils are versatile renewable feedstocks that are well suited for the development of sustainable, functional PCMs. PCMs derived from vegetable oil, which compares favorably with paraffin waxes, the industry standard, are currently available. However, their melting points are typically below 80 °C preventing their wider integration in TES applications, particularly those requiring higher temperatures. The present work manipulated the structural building blocks of fatty acids to advantageously affect the intermolecular forces and increase the properties relevant to TES. The polar amide functional group was incorporated into fatty moieties to take advantage of the strong hydrogen bonds that it forms to increase intermolecular attractions and hence increase the phase change temperature and enthalpy as well as to improve thermal stability and thermal conductivity. A series of carefully designed lipid-derived monoamides and four series of lipid-derived diamides were synthesized via benign and simple amidation reactions. The purity of the amides and the intermolecular hydrogen bond strength were assessed using 1H NMR and FTIR. The properties relevant to TES such as thermal transition, crystal structure and polymorphism, thermal stability and thermal conductivity were measured using DSC, XRD, TGA and a thermal conductivity analyzer, respectively. The complex roles of the PCM's constituting molecular building blocks in the phase behavior were elucidated and correlations between structure, processing conditions and macroscopic physicochemical properties, never before elucidated, were assembled in predictive relationships, drawing a unified picture of the rules that generally govern the phase behavior of lipid-derived PCMs. Practically, the prepared amides demonstrated desirable TES properties with substantial performance improvement over current bio-based PCMs. They presented increased phase change temperatures (79 - 159 °C), enthalpies of fusion (155 - 220 J/g) and thermal stability (234 - 353 °C). More importantly, the predictive structure-function relationships established in this work will allow the straightforward engineering of lipid-derived amide PCM architectures with judicious selection of molecular building blocks to extend the range of organic PCMs and deliver thermal properties desirable for TES applications.
Author Keywords: LATENT HEAT THERMAL ENERGY STORAGE, LIPID-DERIVED AMIDES, PHASE CHANGE MATERIALS, RENEWABLE, SOLID LIQUID AMIDE PCMS, THERMAL PROPERTIES
Tracking Mercury and Mercury Stable Isotopes Throughout the Wabigoon/English River System: A Preliminary Assessment
In the Wabigoon/English River system, mercury concentrations downstream from Dryden, ON, where there was a former chlor-alkali plant, remain elevated in sediments and biota. Understanding the current extent and severity of mercury contamination downstream from the former chlor-alkali plant is of great interest in furthering the clean-up of mercury within the traditional territory of Asubpeeschoseewagong Netum (Grassy Narrows) First Nation. The objective of this study was to evaluate the current level and extent of mercury contamination within sediments, crayfish, Hexagenia mayflies, yellow perch, spottail shiner and walleye in the Wabigoon/English River system. An additional objective was to use mercury stable isotope analysis to distinguish between legacy mercury from the former chlor-alkali plant and mercury from geogenic sources. Mercury contamination within surface sediments and biota at locations as far as 178 kms downstream of the historical source of mercury contamination are elevated relative to the reference lake, Wabigoon Lake. Isotope ratios in young of the year fish and sediments collected from within the system were distinct from fish from the reference lake, Wabigoon Lake, indicating that anthropogenic mercury contamination is distinguishable from geogenic mercury.
Daphnia pulicaria responses to temperature and nutrients stress: what happens when the heat is on?
Warming climates have had various consequences on terrestrial and aquatic food webs that are expected to persist. There is evidence suggesting that certain organisms are better equipped to handle changing climates compared to others. Therefore, the purpose of my thesis was to study the adaptability of Daphnia under temperature stress and nutrient limitation. First, to examine the effects of dietary phosphorus limitation and temperature on daphniid life-history and population growth, a series of experiments were conducted in the laboratory. In general, I found that Daphnia body growth rates and life-history traits to food carbon to phosphorus (C:P) ratios change with temperature. Next, I identified a protocol to limit the genomic DNA (gDNA) from ribonucleic acid (RNA) extractions. I found that using a modified phenol-chloroform extraction protocol was the most effective way to remove gDNA from extracted Daphnia RNA samples. Overall, results from this study show that temperature and food quality interactions are more complicated than previously thought. Furthermore, the RNA extraction protocol developed will be useful in future studies examining gene expression responses in Daphnia.
Author Keywords: ecological stoichiometry, gene expression, life-history, nutrient limitation, RNA puritiy, temperature
Assessing Measured and Perceived Risks to Drinking Water Sources: Comparative Case Studies in Small, Rural Communities
Microcontaminants originating from wastewater effluent and run-off from agricultural lands may be present in the sources of drinking water for rural and Indigenous communities in mixed-use watersheds. In this study, a convergent parallel mixed-methods design was applied to assess measured and perceived risks of contamination in the sources of drinking water for two communities; the Six Nations of the Grand River community in Ontario and the community of Soufriere in St. Lucia, West Indies. The overall goal of the project was to assess how measured and perceived risks of exposure to chemical and biological contaminants in drinking water sources could inform water management strategies for the communities. Quantitative data obtained from the analysis of water samples collected indicated that the highest levels and occurrence of fecal bacteria were found in the Soufriere watershed while the highest concentrations and occurrence of pesticides were found in the Grand River watershed. In the Grand River watershed, conventional treatment of water followed by activated carbon filtration and UV disinfection removed fecal bacteria and also removed many chemical microcontaminants with efficiencies as high as 98%. Data from both watersheds indicated that there was a strong positive correlation between the levels of caffeine and sucralose (i.e. indicators of wastewater contamination) in water samples and the levels of either Total Coliforms or fecal bacteria of human origin. Human health risk assessments of individual pesticides and pesticide mixtures performed by applying a hazard quotient (HQ) and hazard index (HI) model, respectively indicated that there were no apparent risks to human health from those microcontaminants. Qualitative data obtained from face-to-face interviews with water managers and health professionals working in the two communities, which were collected and analysed concurrently but independently, illustrated that there were cross-cultural similarities and differences in factors influencing the perceptions of risks associated with the sources of drinking water. These perceptions of risks were mainly influenced by factors such as heuristics or informal and informal reasoning, cognitive-affective factors, social-political institutions and cultural factors. These factors may have also influenced water managers and health professionals, as they often recommended more "soft" strategies for managing water resources in the communities.
Key words: pesticides, fecal bacteria, microcontaminants, POCIS, measured risks, perceived risks, water management, First Nations, Grand River, Soufriere, St. Lucia
Author Keywords: fecal bacteria, measured risks, microcontaminants, perceived risks, POCIS, water management
Temporal variation of dissolved organic matter and diffusive gradient in thin films-labile mercury in the Quesnel river, BC, and the Goose Creek tributary of Churchill river, MB
This study examined dissolved organic matter (DOM) and labile Mercury (from diffusive gradient in thin films (DGT)) in the Quesnel river, British and the Goose creek tributary of the Churchill river, Manitoba. DOM properties were measured with optical measurements of absorption coefficient (a254), spectral slopes (S275-295, SR) and fluorescence indices (HIX, BIX, FI). The DOC proxy measurements (a254) were almost 10 times higher at the Churchill site (Mean a254 116.77 cm-1) compared with the Quesnel river site (Mean a254 12.06 cm-1) during the study periods. While DGT labile Hg concentrations at the Quesnel site (2.17 to 98.97ppt) were almost 10 times more than the levels reported at the Churchill site (0.03 to 9.06 ppt). Fluorescence indices and the rise of labile Hg concentrations in spring indicated mostly terrestrial sources of DOM at both the sites. Spectral slopes and fluorescence indices substantiated that Churchill site had high molecular weight, complex and more humic DOM compared with Quesnel. DOM at both the sites was prone to temporal variation and affected by environmental conditions. Correlation between DGT labile-Hg and DOM parameters suggested that DGT collected Hg-organic complexes along with inorganic labile-Hg complexes.
Author Keywords: Churchill, Diffusive gradient in thin films, Dissolved organic matter, Labile Hg, Mercury, Quesnel
Icelandic Dust Entrainment, Emission & Deposition
Extremely active dust sources within selected areas of Iceland that are comprised of particles supplied from both glacio-fluvial outwash systems and volcanic eruptions (Bullard et al., 2016; Gassó et al., 2018). The supply of sediments, sparsity of vegetation, high frequency of surface winds, and lack of adequate gravel pavement to reduce sand drifting are believed to influence the duration, frequency, and magnitude of these dust events in Iceland. Apart from recent collaborative efforts to measure and model dust entrainment, emission and deposition (Prospero et al., 2012; Zwaaftink et al., 2017), several underlying physical mechanisms that are unique to cold, humid climates and the geology of Iceland are not well understood. This study specifically aims to assess and understand the physics of Icelandic dust entrainment and deposition with an emphasis on the influence of climate and the physical characteristics of the particles. A series of laboratory experiments of different configurations were carried out on several sediments collected from some of the most emissive sources in Iceland in order to understand these dust processes. The results from this study show that the increasing particle sphericity is associated with progressively smaller particle size; and an abundance of amorphous glass increases the surface area and roughness of the particles, which contributes to high porosity that alters the particle skeletal density. The particle features and climate are interlinked with the entrainment and deposition rates. For instance, coarse sediments emit higher PM concentrations than sediments containing more clay. The strong wind shear at the bed surface acts to disperse many of the tiny particle aggregates and coated liquid droplets contained within a splash structure created by the impact of a single water droplet. The deposition of suspended dust particulates is dependent on the particle characteristics and relative humidity. The retreat of glaciers and ice-cap masses in Iceland are expected to expose new dust particulate sources as the global mean temperature continues to rise (Cannone et al., 2008; Radic and Hock, 2011). Therefore, the influence of the particle characteristics and climate on the dust entrainment, emission and de- position must be accounted for in the parameterization of dust dispersion models related to suspended volcaniclastic particles.
Author Keywords: High latitude cold climate environments, Icelandic dust particle characteristics, Laser Doppler anemometer, Rain droplet impact, Settling velocity, Wind tunnel
Predictive Digital Mapping of Soils in Kitimat, British Columbia
Soil is an essential natural resource that supports provisioning services such as agriculture, silviculture, and mining. However, there is limited knowledge on forest soil properties across Canada. Digital soil mapping may be used to fill these data gaps, as it can predict soil properties in areas with limited observations. The focus of this study was to develop predictive maps of select soil physicochemical properties for the Kitimat Valley, British Columbia, and apply these maps to assess the potential impacts of sulphur dioxide emissions from an aluminum smelter, on soil properties in the Valley. Exchangeable [Ex.] magnesium, organic matter, pH, coarse fragment, Ex. potassium, bulk density, Ex. calcium, Ex. acidity, and Ex. sodium were all mapped with acceptable confidence. Time to depletion of base cation pools showed that ~240 km2 of the study area had a depletion time of 50 years or less. However, sources of base cations such as atmospheric deposition and mineral weathering were not considered.
Author Keywords: acidification, buffering capacity, Digital soil mapping, predictive mapping, regression kriging, soil properties