Saville, Barry

SARS-CoV-2 Protein-based Detection Using Localized Surface Plasmon Resonance

Type:
Names:
Creator (cre): Lewis, Tyra Marie, Thesis advisor (ths): Martic, Sanela, Degree committee member (dgc): Emery, Neil, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

During the COVID-19 pandemic, nucleic acid and antibody-based testing methods were heavily relied upon, but can be costly, time-consuming and exhibit high false -negative and -positive rates. Thus, alternative strategies are needed. Viral antigens such as the SARS-CoV-2 spike (S) glycoprotein are critical in the function of the virus and useful as diagnostic biomarkers for viral infections. For biosensing applications, aptamers are suitable high-affinity and cost-effective binding partners for their specific targets. Using localized surface plasmon resonance (LSPR), real-time, rapid acquisition of results can be achieved, essential for improving the efficacy of a sensor. Herein, LSPR aptamer sensors were fabricated for the detection of the SARS-CoV-2 protein. Data indicate that the best performing aptasensor was the streptavidin-biotin sensor, while the current gold aptasensor exhibited lower sensitivity and the fabrication of the carboxyl aptasensor was unsuccessful. The S1 aptamer selectively bound the S1 protein with high binding affinity. Excellent shelf-life stability, reusability, and high recovery in complex matrices was also maintained. Additionally, a receptor binding domain (RBD) functionalized sensor was fabricated to examine the interactions with angiotensin converting enzyme 2 (ACE2), for future assessment of inhibitors used in drug therapies. Overall, LSPR has been demonstrated as a viable tool for measuring SARS-CoV-2 related aptamer-protein and protein-protein interactions, and this strategy may be applied to other viral or non-viral antigen targets.

Author Keywords: Antigen-based Detection, Coronavirus, COVID-19, Inhibition, Localized Surface Plasmon Resonance, SARS-CoV-2

2022

Exploring the Role of Natural Antisense Transcripts in the Stress Response of Ustilago maydis

Type:
Names:
Creator (cre): Lariviere, Monique, Thesis advisor (ths): Saville, Barry, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Donaldson, Michael, Degree granting institution (dgg): Trent University
Abstract:

Fungal pathogens adapt to environmental changes faster than their hosts, due in part to their adaptive mechanisms exhibited in response to stress. Ustilago maydis was used to investigate potential natural antisense transcript (NAT) RNA-mediated mechanisms that enhance fungal adaptation to stress. Of the 349 NATs conserved amongst U. maydis and two related smut fungi, five NATs were identified as having altered transcript levels in response to multiple stress conditions. Subsequently, antisense transcript expression vectors were created for select NATs and transformed into U. maydis haploid cells. When exposed to stress conditions, two antisense expressing mutant strains exhibited alterations in growth. RT-qPCR analysis of mRNA complementary to expressed NATs revealed no significant change in mRNA levels, which suggests NAT expression may influence stress response through dsRNA formation or other RNA mediated mechanisms. These results establish a basis for further investigations into the connection between NATs and the stress response of fungi.

Author Keywords: natural antisense transcripts, non-coding RNAs, stress response, Ustilago maydis

2023

The Influence of nitrogen and sulfur on cadmium tolerance in Euglena gracilis: an RNA-Sequencing investigation

Type:
Names:
Creator (cre): Kennedy , Victoria, Thesis advisor (ths): Saville, Barry, Degree committee member (dgc): Emery, Neil, Degree committee member (dgc): Donaldson, Michael, Degree committee member (dgc): Farrow, Scott, Degree granting institution (dgg): Trent University
Abstract:

Heavy metal pollution threatens human and ecosystem health. E. gracilis was investigated for its potential use in bioremediation due to its tolerance for heavy metals and ability to sequester them from the environment. E. gracilis can remove metals by producing metal binding compounds enriched in sulfur and nitrogen. In this thesis, E. gracilis cultures that were pretreated with elevated levels of sulfur or nitrogen had increased tolerance to CdCl2 compared to non-pretreated cultures. RNA-sequencing revealed that both pretreatments led to transcript level changes and that exposure to CdCl2 led to further transcript level changes. Gene ontology (GO) enrichment analysis reflected changes in nitrogen and sulfur metabolism as well as physiological processes related to metal binding. The data from this thesis revealed important transcription level changes that occur when E. gracilis is challenged with CdCl2 and helps us understand how organisms adapt to heavy metal pollution in the environment.

Author Keywords: bioremediation, Cadmium, Euglena gracilis, GO-enrichment, metal-binding, RNA-Sequencing

2022

Interactome study of the Giardia intestinalis nuclear localized cytochrome b5

Type:
Names:
Creator (cre): Batoff, Gordon William, Thesis advisor (ths): Yee, Janet, Degree committee member (dgc): Huber, Robert J, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

Giardia intestinalis is a waterborne enteric parasite that lacks mitochondria and the capacity for heme biosynthesis. Despite this, Giardia encodes several heme proteins, including four cytochrome b5 isotypes (gCYTB5-I – IV) of unknown function. The aim of this thesis is to gain insight into the function of the Giardia cytochrome b5 isotype III (gCYTB5-III) that is found in the nucleus, as first reported by our laboratory using immunofluorescence microscopy experiments with an isotype-III specific antibody. Nuclear localization of isotype-III is supported by two of my experiments: i) immunoblot analysis of crude cytoplasmic and nuclear enriched fractions of Giardia trophozoites; ii) association of gCYTB5-III with the insoluble fraction of Giardia lysates crosslinked with formaldehyde is reversed by DNase I treatment. To gain an understanding of the possible roles of gCYTB5-III, I performed immunoprecipitation (IP) experiments on lysates from Giardia trophozoites to identify its protein partners. Mass spectroscopy analysis of the immunoprecipitate identified proteins localized to the nucleus (RNA polymerase, DNA topoisomerase, histones, and histone modifying enzymes). Intriguingly, over 40% of the known mitosomal proteome, which functions in iron-sulfur (Fe-S) cluster assembly was also associated with gCYTB5-III. One of these proteins, the flavoenzyme GiOR-1, has been shown to mediate electron transfer from NADPH to recombinant gCYTB5-III. These IP results provide evidence that GiOR-1 and gCYTB5-III interact in vivo, and furthermore, suggest that some proteins in the mitosome could interact with those in the nucleus. I also found that DNA stress, caused by low concentrations of formaldehyde (0.1 – 0.2%) resulted in the increased expression of gCYTB5-III. Collectively these findings suggest a role of gCYTB5-III in Giardia's response to DNA stress and perhaps the formation of Fe/S clusters.

Author Keywords: cluster, cytochrome, heme, iron, mitosome, nuclear

2022

Fungal pathogen emergence: an Ustilago maydis x Sporisorium reilianum model

Type:
Names:
Creator (cre): Storfie, Emilee, Thesis advisor (ths): Saville, Barry, Degree committee member (dgc): Donaldson, Michael, Degree committee member (dgc): Huber, Robert, Degree granting institution (dgg): Trent University
Abstract:

The emergence of fungal hybrid pathogens threatens sustainable crop production worldwide. To investigate hybridization, the related smut fungi, Ustilago maydis and Sporisorium reilianum, were selected because they infect a common host (Zea mays), can hybridize, and tools are available for their analysis. Hybrid dikaryons exhibited filamentous growth on plates but reduced virulence and limited colonization in Z. mays. Select virulence genes in the hybrid had similar transcript levels on plates and altered levels during infection of Z. mays relative to each parental dikaryon. Virulence genes were constitutively expressed in the hybrid to determine if its pathogenic development could be influenced. Little impact was observed in hybrids with increased expression of effectors known to modify host response and metabolism. However, increased expression of transcriptional regulators of stage specific pathogenic development increased the hybrid's capacity to induce symptoms. These results establish a base for investigating molecular aspects of fungal hybrid pathogen emergence.

Author Keywords: effectors, hybrid pathogenesis assays, Sporisorium reilianum, transcription factors, Ustilago maydis, virulence factors

2021

Assessing the environmental correlates of a lethal amphibian pathogen, Batrachochytrium dendrobatidis, in Ontario wetlands

Type:
Names:
Creator (cre): Congram, Meg, Thesis advisor (ths): Murray, Dennis, Degree committee member (dgc): Saville, Barry, Degree committee member (dgc): Lesbarrères, David, Degree granting institution (dgg): Trent University
Abstract:

Many emerging infectious diseases are caused by pathogens that possess free-living life stages, in which they interact with the environment directly rather than through the mediation of a host. These diseases represent major impediments to wildlife conservation; however, the dynamics of their interaction with the environment are poorly studied, often due to the difficulty of detecting these microscopic pathogens in environmental samples. One of these pathogens is Batrachochytrium dendrobatidis (Bd), a fungus that has been linked to declines in many amphibian species. In this thesis I use an emerging technique, environmental DNA detection (eDNA), to detect and quantify Bd in the water of southern Ontario (Canada) wetlands and examine its correlation with a variety of aspects of water quality, surrounding habitat, and seasonal timing. My purpose was to inform not only on potential environment-pathogen dynamics for Bd in northern environments, but to provide insight into the use of eDNA as a disease surveillance tool. I found that not only was there high geographic variation in Bd detection and intensity, but also high temporal variation within the same site on time scales as low as two weeks. While Bd prevalence was not strongly correlated with any of the variables tested, intensity showed strong correlation with canopy cover, with greater canopy cover over a waterbody correlating to lower Bd intensity. My results present several promising avenues for further examination of Bd in northern ecosystems, and indicate that, while caution is warranted in its implementation, eDNA may become an important tool in amphibian pathogen surveillance.

Author Keywords: amphibian disease, Batrachochytrium dendrobatidis, disease monitoring, environment-pathogen dynamics, environmental DNA, wildlife disease

2021

Neonatal Environment Influences Behavioural and Physiological Reactivity to Stressors, and Mammary Gland Development in BALB/c Mice: Implications for Breast Cancer Risk

Type:
Names:
Creator (cre): Kenniphaas, Kyle, Thesis advisor (ths): Kerr, Leslie, Degree committee member (dgc): Kennett, Deborah, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

Using rodent models, it is possible to study the behavioural and physiological outcomes of early life stress and the influences on normal mammary gland development and carcinogenic risk. Results demonstrate that the experience of three weeks of prolonged maternal separation (LMS; 4 hrs/day) increased the susceptibility of adult, but not pubertal, female BALB/c mice to engage in higher levels of depressive-related immobility behaviour and lower levels of active floating (a suggested adaptive coping behaviour) in the acute forced swim test, than offspring that experienced three weeks of brief separation (BMS; 15 min/day) events. Despite the increased immobility behaviour, adult LMS female offspring demonstrated lower basal corticosterone levels relative to BMS females. However, the experience of chronic early-life stress, regardless of the length, results in greater changes between non-stressed and stressed corticosterone levels (i.e. stressor reactivity) in adult females compared to their male counterparts. These changes were associated with decreased glucocorticoid receptor and coactivator-associated arginine methyltransferase 1 protein expression in mammary gland of female LMS mice at young adulthood, highlighting potential mechanisms underlying their heightened risk of mammary tumourigenesis. These data suggest that early life environments can induce behavioural and physiological alterations observed in adulthood, which may have an influence on the likelihood of malignancies developing in the breast.

Author Keywords: coping, early life stress, mammary gland development, mother-infant interactions, steroid receptors, stressor reactivity

2014

Cytokinins in nematodes: the potential role of cytokinins in soybean (Glycine max) resistance to soybean cyst nematode (Heterodera glycines)

Type:
Names:
Creator (cre): Rahman, Tamzida, Thesis advisor (ths): Emery, Neil, Degree committee member (dgc): Saville, Barry, Degree committee member (dgc): Kisiala, Anna, Degree granting institution (dgg): Trent University
Abstract:

To investigate cytokinins (CKs) in nematodes, CK profiles of a free-living Caenorhabditis elegans and a plant parasitic Heterodera glycines (soybean cyst nematode, SCN) were determined at the egg and larval stages. SCN had higher total CK level than C. elegans; however, CKs in SCN were mostly inactive precursors, whereas C. elegans had more bioactive forms. This is the first study to show that methylthiols are present in nematodes and may affect plant infection. In infectious SCN larvae, methylthiol levels were much higher than in eggs or C. elegans larvae. Furthermore, The CK profiles of SCN-susceptible and resistant Glycine max cultivars at three developmental stages revealed that, regardless of the resistance level, SCN infection caused an increase in root CKs. One resistant cultivar, Pion 93Y05, showed significantly high levels of bioactive N6-isopentenyladenine (iP) in the non-infected roots which indicated a potential role of CKs in soybean resistance to SCN.

Author Keywords: Cytokinins, HPLC-MS/MS, Nematode, SCN resistance, Soybean

2019

Interactome Study of Giardia Intestinalis Cytochromes B5

Type:
Names:
Creator (cre): Dayer, Guillem Sébastien, Thesis advisor (ths): Yee, Janet, Thesis advisor (ths): Rafferty, Steven, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

Giardia intestinalis is an anaerobic protozoan that lacks common eukaryotic heme-dependent respiratory complexes and does not encode any proteins involved in heme biosynthesis. Nevertheless, the parasite encodes several hemeproteins, including three members of the Type II cytochrome b5 sub-group of electron transport proteins found in anaerobic protist and amitochondriate organisms. Unlike the more well-characterized cytochrome b5s of animals, no function has been ascribed to any of the Type II proteins. To explore the functions of these Giardia cytochromes (gCYTB5s), I used bioinformatics, immunofluorescence microscopy (IFM) and co-immunoprecipitation assays. The protein-protein interaction in silico prediction tool, STRING, failed to identify relevant interacting partners for any of the Type II cytochromes b5 from Giardia or other organisms. Differential cellular localization of the gCYTB5s was detected by IFM: gCYTB5-I in the perinuclear space; gCYTB5-II in the cytoplasm with a staining pattern similar to peripheral vacuole-associated protein; and gCYTB5-III in the nucleus. Co-immunoprecipitation with the gCYTB5s as bait identified potential interacting proteins for each isotype. The most promising candidate is the uncharacterized protein GL50803_9861, which was identified in the immunoprecipitate of both gCYTB5-I and II, and which co-localizes with both. Structural analysis of GL50803_9861 using Swiss Model, Phyre2, I-TASSER and RaptorX predicts the presence of a nucleotide-binding domain, which is consistent with a potential redox role involving nicotinamide or flavin-containing cofactors. Finally, the protein GL50803_7204 which contains a RNA/DNA binding domain was identified a potential partner of gCYTB5-III. These findings represent the first steps in the discovery of the roles played by these proteins in Giardia.

Author Keywords: Cytochrome b5, Giardia intestinalis, Heme, Interactome, Protein structure prediction

2017

Studies of the Giardia intestinalis trophozoite cell cycle

Type:
Names:
Creator (cre): Horlock-Roberts, Kathleen, Thesis advisor (ths): Yee, Janet, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

To study the Giardia intestinalis cell cycle, counterflow centrifugal elutriation (CCE) was used to separate an asynchronous trophozoite culture into fractions enriched for cells at the different stages of the cell cycle. For my first objective, I characterized the appearance of a third peak (Peak iii) in our flow cytometry analysis of the CCE fractions that initially suggested the presence of 16N cells that are either cysts or the result of endoreplication of Giardia trophozoites. I determined that this third peak consists of doublets of the 8N trophozoites at the G2 stage of the cell cycle that were not removed effectively by gating parameters used in the analysis of the flow cytometry data. In the second objective, I tested the use of a spike with RNA from the GS isolate of Giardia as an external normalizer in RT-qPCR on RNA from CCE fractions and encystation cultures of Giardia from the WB isolate. My results showed that the GS RNA spike is as effective as the use of previously characterized internal normalizer genes for these studies. For the third objective, I prepared two sets of elutriation samples for RNA seq analysis to determine the transcriptome of the Giardia trophozoite cell cycle. I confirmed the results of the cell cycle specific expression of several genes we had previously tested by RT-qPCR. Furthermore, our RNA-seq identified many genes in common with those identified from a microarray analysis of the Giardia cell cycle conducted by a collaborator. Finally, I observed an overall <4 fold change in differentially expressed genes during the G1/S and G2/M phase of the cell cycle. This is a modest change in gene expression compared to 10 - 30 fold changes for orthologous genes in mammalian cell cycles.

Author Keywords: Cell cycle, Counterflow Centrifugal Elutriation, Flow Cytometry, RNA-sequencing, RT-qPCR

2017