Chemistry

Electrochemical Biosensors for Neurodegenerative Disease Biomarkers: Investigations into the origin and diagnosis of Alzheimer's disease and amyotrophic lateral sclerosis

Type:
Names:
Creator (cre): Wallace, William, Thesis advisor (ths): Martic, Sanela, Degree committee member (dgc): Rafferty, Steven, Degree committee member (dgc): Vreugdenhil, Andrew, Degree granting institution (dgg): Trent University
Abstract:

The onset of neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are typically characterised by the aggregation of protein biomarkers into cytotoxic fibrils. Novel means of analysing these biomarkers are needed to expand the literature toward earlier diagnosis of these conditions. Electrochemical sensors could offer the sensitivity and selectivity needed for specialised analysis, including potential point-of-care applications. The AD biomarker Tau, and ALS biomarker TDP-43 proteins are explored here by using a label-free electrochemical sensors. Tau protein was covalently bound to gold electrode surface to study the in vitro mechanisms of aggregation for this protein. An immunosensor to TDP-43 was developed by covalently binding primary TDP-43 antibodies (Abs) on gold electrode surface. A novel direct ELISA sensor for TDP-43 with visual detection and electrochemical quantification was also developed. The results validated the experimental designs toward specialised and selective analysis of these biomarkers and their aggregation mechanisms.

Author Keywords: ALS, Alzheimer's, Biosensors, Electrochemistry, Tau, TDP-43

2021

The Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment

Type:
Names:
Creator (cre): Fischer, Jillian Gould, Thesis advisor (ths): Metcalfe, Chris, Thesis advisor (ths): Hintelmann, Holger, Degree granting institution (dgg): Trent University
Abstract:

Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm.

Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling

2013

The Effect of Water Surface Simulated Rain Drop Impacts on Water to Air Chemical Transfers of Perfluorinated Carboxylic Acids (PFCAs)

Type:
Names:
Creator (cre): McInnes, Mark Andrew, Thesis advisor (ths): Ellis, David A, Degree committee member (dgc): Thompson, Matthew, Degree committee member (dgc): Gueguen, Celine, Degree committee member (dgc): Stock, Naomi, Degree granting institution (dgg): Trent University
Abstract:

Perfluorinated carboxylic acids (PFCAs) are anthropogenic environmentally ubiquitous surfactants that tend to concentrate on water surfaces. This investigation looked at the effect of simulated rain on the atmospheric concentration of a suite of PFCAs (C2 - C12) above the bulk water system. Increased air concentrations of all PFCAs were detected during simulated rain events. Long chain PFCAs (>C8) were found to be much more concentrated in the air above the bulk water system than their short chain counter parts (

Author Keywords: aqueous aerosols, perfluorinated carboxylic acids, surfactants environmental fate, water to air chemical transfer

2014

Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish

Type:
Names:
Creator (cre): Celsie, Alena Kathryn Davidson, Thesis advisor (ths): Mackay, Donald, Thesis advisor (ths): Parnis, Mark, Degree committee member (dgc): Hickie, Brendan, Degree committee member (dgc): Mackay, Donald, Degree committee member (dgc): Parnis, Mark, Degree committee member (dgc): Aherne, Julian, Degree granting institution (dgg): Trent University
Abstract:

Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish

Alena Kathryn Davidson Celsie

A novel dynamic fugacity model is developed that simulates the uptake of chemicals in fish by respiration as applies in aquatic toxicity tests. A physiologically based toxicokinetic model was developed which calculates the time-course of chemical distribution in four tissue compartments in fish, including metabolic biotransformation in the liver. Toxic endpoints are defined by fugacity reaching a 50% mortality value. The model is tested against empirical data for the uptake of pentachloroethane in rainbow trout and from naphthalene and trichlorobenzene in fathead minnows. The model was able to predict bioconcentration and toxicity within a factor of 2 of empirical data. The sensitivity to partition coefficients of computed whole-body concentration was also investigated. In addition to this model development three methods for predicting partition coefficients were evaluated: lipid-fraction, COSMOtherm estimation, and using Abraham parameters. The lipid fraction method produced accurate tissue-water partitioning values consistently for all tissues tested and is recommended for estimating these values. Results also suggest that quantum chemical methods hold promise for predicting the aquatic toxicity of chemicals based only on molecular structure.

Author Keywords: COSMOtherm, fish model, fugacity, Partition coefficient, tissue-water, toxicokinetics

2015

Assessing limnological characteristics of subarctic Québec thaw ponds and mercury methylation and methylmercury demethylation within their sediments

Type:
Names:
Creator (cre): Reynolds, Sancha, Thesis advisor (ths): Hintelmann, Holger, Degree committee member (dgc): Canario, João, Degree committee member (dgc): Eimers, Catherine, Degree granting institution (dgg): Trent University
Abstract:

Thawing permafrost due to increasingly warm temperatures in northern subarctic regions is releasing mercury. The consequent formation of thaw ponds in the peatland palsa valley of the Sasapimakwananisikw (SAS) river in Whapmagoostui-Kuujjuarapik, Québec may provide a pool for MMHg formation and a potential risk to aquatic and human life, if these ponds facilitate MMHg export through hydrological connections to nearby waterways. Hg methylation and MMHg demethylation activities were examined in thaw pond sediments using a Hg tracer isotope incubation experiment. Analysis by coupling gas chromatography cold-vapor atomic fluorescence spectrophotometry (GC-CVAFS) with inductively coupled mass spectrometry (ICP-MS) techniques showed that MMHg was produced at a higher rate and within the first 2 h of incubation for both summer and winter seasons. For thaw ponds SAS1A, SAS1B and SAS2A, MMHg was formed at 0.0048 % h-1, 0.0012 % h-1, and 0.0008 % h-1, respectively during winter and at 0.0001 % h-1, 0.0016 % h-1, and 0.0010 % h-1, respectively during summer. Detection of MMHg losses were not as expected likely due to limitations of the combined tracer spike and overestimation of the in situ ambient mercury levels. Physical and chemical properties vary within ponds, among ponds and between winter and summer. SAS1B's location nearby an organic carbon rich palsa may be ideal to study DOC – Hg interactions. Variability in pond characteristics including depth, surface area, age, pH, temperature, colour, oxygen concentration, total dissolved and suspended solids, conductivity, carbon, mercury, ammonium, calcium, magnesium, sulfate, total phosphorous, potassium, and sodium between seasons indicate the challenge of predicting future environmental impacts of climate change related thaw pond creation in the north.

Author Keywords: demethylation, mercury, methylation, methylmercury, SAS, thaw ponds

2020

Fingerprinting of dissolved organic matter and copper ligands in the Canadian Arctic and North Pacific Ocean

Type:
Names:
Creator (cre): Durrett, Victoria, Thesis advisor (ths): Gueguen, Celine, Degree committee member (dgc): Stock, Naomi, Degree committee member (dgc): Stotesbury, Theresa, Degree granting institution (dgg): Trent University
Abstract:

Dissolved organic matter (DOM) in oceans provides nutrients and ultraviolet radiation protection to microbes. Some DOM compounds can chelate with metals, including copper, controlling their transport and bioavailability in marine systems. As copper functions as both a nutrient and toxicant, studies into the chemical structures of Cu-ligands is important, however currently limited. In this thesis, the chemical composition of total and Cu-binding DOM is investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the Canadian Arctic and North Pacific. Chapter 2 reveals chemical differences in DOM composition between the southern and northern Canada Basin, revealing the influence of terrestrial and biological sources. Chapter 3 shows the uniqueness of Cu-binding ligands found in the Canadian Arctic and North Pacific Ocean. Studying the composition of DOM gives insight into the chemical diversity of marine DOM, helping to predict the effects of a changing climate on marine ecosystems.

Author Keywords: biological, dissolved organic matter, fluorescence, immobilized metal-ion affinity chromatography, mass spectrometry, terrestrial

2019

Monitoring and fate of selected tire-derived organic contaminants

Type:
Names:
Creator (cre): Johannessen, Cassandra, Thesis advisor (ths): Metcalfe, Chris D, Thesis advisor (ths): Parnis, J. Mark, Degree committee member (dgc): Metcalfe, Chris D, Degree committee member (dgc): Parnis, J. Mark, Degree committee member (dgc): Dang, Huy, Degree committee member (dgc): Hickie, Brendan, Degree granting institution (dgg): Trent University
Abstract:

Road runoff is a vector for the transport of potentially toxic chemicals into receiving waters. In this study, selected tire-derived chemicals were monitored in surface waters of rivers adjacent to two high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples were collected from the Don River and Highland Creek in the GTA during 5 hydrological events that occurred in the period between early October 2019 and late March 2020, as well as an event in August 2020. Grab samples were collected from these rivers during a period of low flow in August 2020, as well as during a storm event in July of 2020. Analysis was performed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection (UHPLC-HRMS). Hexamethoxymethylmelamine (HMMM), a cross-linker of tire material, was detected at elevated concentrations (> 1 µg/L) during rain events in the fall and winter of 2019-20 and during a period of rapid snow melt in early March of 2020. These samples were also analyzed for the tire additive, 6PPD, and its oxidation by-product, 6PPD-quinone, as well as 1,3-diphenylguanidine (DPG). In many samples collected from the Don River and Highland Creek during storm events, the estimated concentrations of 6PPD-quinone exceeded the reported LC50 of 0.8 µg/L for Coho salmon exposed to this compound. Temporal samples collected at 3-hour intervals throughout rain event the October 2020 showed that there was a delay of several hours after the start of the event before these compounds reached their peak concentrations. In addition, 26 candidate transformation products and precursor compounds of HMMM were monitored; 15 of these compounds were detected in surface waters in the GTA. The maximum total concentration of this class of methoxymethylmelamine compounds in surface water samples was estimated to be 18 µg/L. There is limited knowledge about the properties of HMMM, its precursor contaminants, and its transformation compounds, as well as their fate in the environment. COSMO-RS solvation theory was used to estimate the physico-chemical properties of HMMM and its derivatives. Using the estimated values for these properties (e.g., solubility, vapour pressure, log Kow) as inputs to the Equilibrium Criterion (EQC) fugacity-based multimedia model, the compounds were predicted to readily partition into aqueous media, with mobility in water increasing with the extent of loss of methoxymethyl groups from HMMM. Overall, this study contributes to the growing literature indicating that potentially toxic tire-wear compounds are transported via road runoff into urban surface waters. In addition, this study provides insight into the environmental behaviour of HMMM and its transformation products.

Author Keywords: 6PPD-quinone, COSMOtherm, Fugacity, Hexamethoxymethylmelamine, Road runoff, Tire wear

2021

Supercritical Water Chemistry: Molecular Dynamics Simulations and Flow Reactor Studies

Type:
Names:
Creator (cre): Kallikragas, Dimitrios Theofanis, Thesis advisor (ths): Svishchev, Igor M, Degree committee member (dgc): Atkinson, Bill, Degree committee member (dgc): Kisch, Joey, Degree committee member (dgc): Chkrebtii, Anatoli, Degree granting institution (dgg): Trent University
Abstract:

Supercritical water (SCW) exhibits unique properties that differentiates it from its low temperature behaviour. Hydrogen bonding is dramatically reduced, there is no phase boundary between liquid and gaseous states, heat capacity increases, and there is a drastic reduction of the dielectric constant. Efforts are underway for researchers to harness these properties in the applications of power generation and hazardous waste destruction. However, the extreme environment created by the high temperatures, pressures and oxidizing capabilities pose unique challenges in terms of corrosion not present in subcritical water systems. Molecular Dynamics (MD) simulations have been used to obtain mass transport, hydration numbers and the influence on water structure of molecular oxygen, chloride, ammonia and iron (II) cations in corrosion crevices in an iron (II) hydroxide passivation layer. Solvation regimes marking the transitions of solvation based versus charge meditated processes were explored by locating the percolation thresholds of both physically and hydrogen bonded water clusters. A SCW flow through reactor was used to study hydrogen evolution rates over metal oxide surfaces, metal release rates and the kinetics for the oxidation of hydrogen gas by oxygen in SCW. Insights into corrosion phenomena are provided from the MD results as well as the experimental determination of flow reactor water and hydrogen chemistry.

Author Keywords: Flow Studies, Molecular Dynamics, Supercritical Water

2019

Research and development of synthetic materials for presumptive testing in bloodstain pattern analysis: a luminol-reactive forensic blood substitute

Type:
Names:
Creator (cre): Polacco, Sumiko Chrysantha, Thesis advisor (ths): Wilson, Paul, Degree committee member (dgc): Stotesbury, Theresa, Degree committee member (dgc): Vreugdenhil, Andrew, Degree granting institution (dgg): Trent University
Abstract:

Chemical presumptive tests are used as the primary detection method for latent bloodstain evidence. This work focuses on developing a forensic blood substitute which mimics whole blood reactivity to a luminol solution commonly used in presumptive testing. Designing safe and accessible materials that mimic relevant properties of blood is a recognized research need in forensic science. Understanding the whole blood dynamics related to reactivity with presumptive testing chemicals is important for developing accurate analogues. Provided in this thesis is a quantitative and qualitative characterization of photoemission from the reaction of a luminol solution to ovine blood. Luminol reactivity of a horseradish peroxidase encapsulated sol-gel polymer was validated against this ovine blood standard. This material, the luminol-reactive forensic blood substitute, is a key deliverable of this research. An optimized protocol for implementing this technology as a reagent control test, and as a secondary school chemistry experiment are presented. This thesis outlines the research and development of a forensic blood substitute as it relates to presumptive testing in bloodstain pattern analysis.

Author Keywords: bloodstain pattern analysis, forensic science, luminol, presumptive testing, secondary school education, sol-gel chemistry

2018

The origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles

Type:
Names:
Creator (cre): Austin, Cayla Ev, Thesis advisor (ths): Murray, Dennis L, Degree committee member (dgc): Stock, Naomi L, Degree committee member (dgc): Rafferty, Steven P, Degree granting institution (dgg): Trent University
Abstract:

Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant.

Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions

2017