Aherne, Julian

Hydrochemistry and critical loads of acidity for lakes and ponds in the Canadian Arctic

Type:
Names:
Creator (cre): Liang, Tanner, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Gueguen, Celine, Degree committee member (dgc): Lafleur, Peter, Degree granting institution (dgg): Trent University
Abstract:

Threats such as climate change and increased anthropogenic activity such as shipping, are expected to negatively affect the Arctic. Lack of data on Arctic systems restricts our current understanding of these sensitive systems and limits our ability to predict future impacts. Lakes and ponds are a major feature of the Arctic landscape and are recognized as 'sentinels of change', as they integrate processes at a landscape scale. A total of 1300 aquatic sites were assessed for common chemical and physical characteristics. Geology type was found to be the greatest driver of water chemistry for Arctic lakes and ponds. Acid-sensitivity was assessed using the Steady State Water Chemistry model and a subset of 1138 sites from across the Canadian Arctic. A large portion of sites (40.0%, n = 455) were classified as highly sensitive to acidic deposition, which resulted in a median value of 35.8 meq·m―2·yr―1 for the Canadian Arctic. Under modelled sulphur deposition scenarios for the year 2010, exceedances associated with shipping is 12.5% (n = 142) and 12.0% (n = 136) for without shipping, suggesting that impacts of shipping are relatively small.

Author Keywords: Acidic deposition, Arctic lakes, Critical loads, Shipping emissions, Steady-State Water Chemistry Model, Water chemistry

2018

Moss Biomonitoring of Trace Element Deposition in Northwestern British Columbia, Canada

Type:
Names:
Creator (cre): Cowden, Phaedra, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Sager, Eric, Degree committee member (dgc): Canners, Richard, Degree granting institution (dgg): Trent University
Abstract:

Atmospheric pollutant deposition poses a risk to ecosystem health; therefore, monitoring the spatial and temporal trends of deposition is integral to environmental sustainability. Although moss biomonitoring is a common method to monitor various pollutants in Europe, offering a cost-effective approach compared to traditional methods of monitoring, it is rarely used in Canada. The focus of this study was a spatial assessment of trace element deposition across a region with a known large-point source of emissions using the moss biomonitoring method. Moss tissues presented strong correlations with modelled deposition in the region, suggesting mosses are a valuable biomonitoring tool of trace element deposition, especially in regions dominated by large-point emission sources. Additionally, a moss species endemic to Canada was compared to commonly used moss species with results indicating this species (Isothecium stoloniferum) can be used reliably as a biomonitor. Moss biomonitoring is recommended as a compliment to fill in spatial gaps in current monitoring networks across the country.

Author Keywords: biomonitoring, bryophytes, Hylocomium splendens, moss, Pleurozium schreberi, trace elements

2018

Near-road assessment of traffic related air pollutants along a major highway in Southern Ontario

Type:
Names:
Creator (cre): Reid, Holly, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Sager, Eric, Degree committee member (dgc): Eimers, Catherine, Degree granting institution (dgg): Trent University
Abstract:

The spatial and temporal variation in atmospheric nitrogen dioxide (NO2), ammonia (NH3), and 17 elements (V, Cr, Fe, Ni, Cu, Zn, As, Cd, Pb, Mg, Al, Ca, Co, Se, Sb, Mn, and Na) were measured at 40 road side locations along a ~250 km traffic density gradient of 40,000–400,000 vehicles on the King's Highway 401, in Ontario, Canada. Elemental concentrations were measured over a year, using moss bags as passive samplers, for four quarterly three-month exposure periods (October 2015 – October 2016). Gaseous NO2 and NH3 concentrations were measured using Willem's badge passive diffusive samplers for twelve one-week exposure periods (one per month: October 2015–October 2016). Dry deposition of nitrogen was estimated using the inferential method. There were significant linear relationships between NO2 and NH3 and average annual daily traffic (AADT) volumes across the study area; higher concentrations corresponded to higher volume traffic sites. Average NO2 concentrations at sites ranged from 23.5 to 73 μg/m3, with an annual average of 43.7 μg/m3. Ammonia ranged from 2.56 to 13.55 μg/m3, with an annual average of 6.44 μg/m3. There were significant quarterly variations in NO2, with concentrations peaking during the winter months. In contrast, NH3 showed no significant quarterly variation, but a slight peak occurred during the summer. Gaseous NO2 and NH3 were highly positively correlated (r = 0.63), suggesting a common emission source from traffic. Concentrations in exposed moss were determined by subtracting the total concentration of each metal in the exposed sample from the background concentration present in the moss. Relative accumulation factors (RAF) and contamination factors were also calculated to determine the anthropogenic influence on tissue concentrations in exposed moss. All metals showed elevated levels versus background concentrations, with all metals except Ni and Co showing considerable enrichment. The highest levels of contamination were from V, Cr, Fe, Zn, Cd, Sb, Pb and Na. Principal component analysis indicated 5 clear clusters of related elements, with PC1 accounting for 36.2% and PC2 accounting for 25.6% of the variance. Average annual daily traffic was significantly related to Cr, Fe, Cu, Sb, Mn, Al, and Na. Road side monitoring shows consistently higher concentrations than active monitoring sites located further from the edge of the road, indicating a need for increased road side monitoring in Ontario, Canada.

2019

Calcium in the Muskoka River Watershed- Patterns, trends, the potential impact of forest harvesting and steps toward an ecosystem approach to mitigation

Type:
Names:
Creator (cre): Reid, Carolyn Roberta, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Aherne, Julian, Degree committee member (dgc): Whitfield, Colin J, Degree granting institution (dgg): Trent University
Abstract:

Decreasing lake calcium (Ca) concentration, in lakes located in base poor

catchments of the Muskoka River Watershed (MRW) in south-central Ontario, is a well- established acid-rain driven legacy effect threatening the health and integrity of aquatic ecosystems that can be compounded by additional Ca removals through forest harvesting. The objectives of this thesis were to assess patterns and temporal trends in key water chemistry parameters for a set of lakes in forested catchments in the MRW in south- central Ontario, to predict the pre-industrial steady state lake Ca concentration and the potential impact of harvesting on lake Ca levels in lakes located in managed MRW Crown forests, and to assess potential effects of various mitigation strategies in Ca depleted managed forests. Mean lake Ca (mg L-1) in 104 lakes across the MRW have decreased by 30% since the 1980's with the rate of decrease slowing over time. Mean Lake SO4 (mg L-1), and Mg (mg L-1) concentration also decreased significantly with time (37% and 29%, respectively) again with a declining rate of decrease, while mean lake pH and DOC increased significantly between the 1980's and the 1990's (16% and 12%, respectively) but exhibited no significant pattern after that. Principal components and GIS spatial analyses of 75 lakes with data from 2011 or 2012 water seasons suggested that smaller lakes, at higher elevation in smaller catchments with higher runoff and minimally impacted by the influence of roads and agriculture are associated with lower Ca concentrations and thus are the lakes at risk of amplified Ca depletion from forest harvesting. Spatial analyses of harvested catchments indicated that, under the proposed 10 year land forest management cut volumes, 38% of 364 lakes in the MRW will fall below the critical 1 mg L-1 Ca threshold compared with 8% in the absence of future harvesting. With respect to potential mitigation measures, soil pH and foliar Ca were indicated by meta-analysis to be more responsive to lime addition studies while soil base saturation and tree growth appeared more responsive to wood-ash addition. Future research should address the spatial extent of lakes at risk and identify when critical levels will be reached under harvesting regimes. Further investigation into the use of Ca-addition as a tool for managing the cumulative effects of past, present and future stressors is recommended.

Author Keywords: calcium, harvesting, lakes, lime, Muskoka River Watershed, wood-ash

2015

Passive sampling of indoor and outdoor atmospheric nitrogen dioxide in the greater Toronto area

Type:
Names:
Creator (cre): Hornyak, Scott Allen, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Hutchinson, Tom, Degree committee member (dgc): Watmough, Shaun, Degree granting institution (dgg): Trent University
Abstract:

The reliability and performance of four passive sampler membrane coatings specific to nitrogen dioxide (NO2) were evaluated through co-exposure at multiple Ontario Ministry of Environment and Climate Change (OMOECC) active monitoring stations. All four coatings performed relatively similar under a wide range of meteorological conditions, notably showing exposure-specific atmospheric uptake rates. Further, indoor and outdoor atmospheric concentrations of NO2 (a marker of traffic-related air pollution) were evaluated at multiple elementary schools in a high-density traffic region of Toronto, Ontario, using a Triethanolamine based passive sampler membrane coating. Samplers were also co-exposed at OMOECC active monitoring stations to facilitate calibration of exposure-specific atmospheric uptake rates. Indoor NO2 atmospheric concentrations were 40 to 50% lower than outdoor concentrations during the spring−summer and autumn−winter periods, respectively. In large cities such as Toronto (Population 2,700,000), the influence of a single major road on outdoor and indoor NO2 concentrations is predominantly masked by spatially-extensive high-density traffic.

Author Keywords: active sampler, membrane coating type, nitrogen dioxide, passive sampler, Toronto, traffic density

2015

Mercury and Persistent Organic Pollutants in Remote Acid Sensitive Irish Lake Catchments

Type:
Names:
Creator (cre): McFarland, Victoria, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Metcalfe, Chris, Degree committee member (dgc): Hintelmann, Holger, Degree granting institution (dgg): Trent University
Abstract:

A catchment-based study was carried out at three remote acid sensitive Irish lakes to determine concentrations of Hg and POPs and to investigate the factors governing the partitioning of these pollutants in various environmental matrices. Both Hg and POPs are an environmental concern due to their ability to travel long distances via atmospheric transport and their tendency to accumulate in biota and in various environmental compartments. Concentrations of POPs and Hg measured in this study were relatively low and consistent with concentrations measured at background levels around the world. Mercury concentrations appeared to be influenced by various site characteristics, specifically organic matter. Many of the POPs examined in this study appeared to be present as a result of long-range transport and more specifically; the physico-chemical properties of POPs appeared to dictate their distribution within soils, moss and sediment at each of the study catchments.

2017

A Regional Assessment of Soil Calcium Weathering Rates and the Factors that Influence Lake Calcium in the Muskoka River Catchment, Central Ontario

Type:
Names:
Creator (cre): Stott, Grant Charles, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Whitfield, Colin, Degree granting institution (dgg): Trent University
Abstract:

(MRC) in central Ontario was carried out to determine the range and spatial distribution of soil Ca weathering rates, and investigate the relationships between lake Ca and soil and catchment attributes. The MRC is acid-sensitive, and has a long history of impacts from industrial emission sources in Ontario and the United States. Small headwater catchments were sampled for soil and landscape attributes (e.g. elevation, slope, catchment area) at 84 sites. Soil Ca weathering rates, estimated with the PROFILE model, were low throughout the region (average: 188 eq/(ha·yr)) compared to global averages, and lower than Ca deposition (average: 292 eq/(ha·yr)). Multiple linear regression models of lake Ca (n= 306) were dominated by landscape variables such as elevation, which suggests that on a regional scale, landscape variables are better predictors of lake Ca than catchment soil variables.

Author Keywords: Calcium, Lakes, Regional assessment, Regression, Soils, Weathering

2015

Acidification of lakes in northern Saskatchewan: An assessment of sensitivity and risk from acidic deposition

Type:
Names:
Creator (cre): Cathcart, Hazel, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Whitfield, Colin, Degree granting institution (dgg): Trent University
Abstract:

The emission of acid precursors by large point sources in Western Canada

(such as the Athabasca Oil Sands Region) has prompted studies into the possible impact to downwind aquatic and terrestrial ecosystems. Sensitivity of catchments to acidic deposition was estimated for the total lake population of northern Saskatchewan (n=89,947) using regression kriging. Under the Steady State Water Chemistry model, a range of 12-15% of the total catchment population was predicted to be in exceedance of critical loads under 2006 deposition levels and 6% of catchments were estimated to be very sensitive (pH below 6 and acid neutralizing capacity, alkalinity, calcium below 50 eqL-1). Temporal changes in soil and water chemistry estimated for 18 Alberta and Saskatchewan catchments using the Very Simple Dynamic and PROFILE models showed that changes in soil base saturation and lake acid neutralizing capacity between 1850 and 2100 were slight, declining 0.8% and 0.9% by 2012, respectively.

Author Keywords: acidification, critical loads, exceedance, PROFILE, regression kriging, VSD

2015

In situ measurements of trace metal species in the Athabasca and Mackenzie Rivers using diffusive gradient in thin films (DGT) devices

Type:
Names:
Creator (cre): Zhu, Yu, Thesis advisor (ths): Gueguen, Celine, Degree committee member (dgc): Koprivnjak, Jean-François, Degree committee member (dgc): Aherne, Julian, Degree granting institution (dgg): Trent University
Abstract:

This study assesses the bioavailable metal (Cu, Ni, Zn, Pb) species in the Athabasca-Mackenzie watersheds using diffusive gradient in thin films (DGT) devices. Metal toxicity is not only based on the concentration of metal in natural waters, but also on the nature of metal species. Four main forms in aquatic systems are: free ion, inorganic species, DOM bound (humic) species and metal colloidal species. The free ion and inorganic species and very small humic species are known as DGT-labile species and, are considered to be more bioavailable to micro-organisms due to the size and thus may be toxic to microorganisms. In this study, DGT devices were applied to (1) monitor the DGT-labile metal species in the lower Athabasca River and the Mackenzie River watershed and (2) assess the DGT-labile metal concentrations on temporal and spatial scales. In the lower Athabasca River, comparison between the DGT results and the Windermere Humic Acid Model (WHAM) calculation indicated good agreements for all metals when the precipitated iron(III) hydroxide was assumed as an active binding surface. No significant variations in labile species were found over 2003-2012 (RAMP database) despite the development of oil sands. In the Mackenzie River, no significant difference in DGT-labile metal concentrations and DOC concentrations was found in yearly basis 2012-2014. Only DOC was lower in August (6.98 and 3.85 ppm, respectively; p< 0.05) due to dilution from heavy rain events. Spatially, DGT-labile Cu and Ni in the downstream Mackenzie River were higher than upstream (1.79 and 0.58 ppb for Cu, 1.68 and 0.77 ppb for Ni, 4.06 and 6.91 ppm for DOC; p < 0.05). Overall the in situ measurements of metals constitute a benchmark for future studies in water quality and be helpful in environmental management in Alberta and the Northwest Territories in Canada.

Author Keywords: Athabasca River, DGT, Mackenzie River, Speciation, Trace Metal, WHAM

2016

Anthropogenic particles and microplastics in headwater lake catchments in Muskoka-Haliburton, Canada

Type:
Names:
Creator (cre): Welsh, Brittany, Thesis advisor (ths): Aherne, Julian, Degree granting institution (dgg): Trent University
Abstract:

Microplastics, plastic particles less than 5 mm in diameter, are ubiquitous in the environment. This study estimated the abundance of microplastics (MP) in atmospheric deposition from four background monitoring stations in Muskoka-Haliburton, south-central Ontario, Canada and quantified the fate of microplastics to three background headwater lake catchments in Muskoka-Haliburton. Microplastics were observed across all sample media with polyethylene terephthalate and polyamide being predominant. The average atmospheric deposition of anthropogenic particles was 57 particles/m2/day with a plastic deposition rate of 7 MP/m2/day. Atmospheric deposition represented the highest daily microplastic flux rate to the three headwater lake catchments compared, 1.5 to 4 times greater than the flux rate for the inflow streams suggesting that atmospheric deposition can account for all the inflowing microplastics. A large fraction of the microplastics from atmospheric deposition (41 – 73%) were retained in the terrestrial catchment and there was a high retention of microplastics in each of the study lakes (1.44 – 7.39 million MP/day; 30 – 45%) suggesting that a large fraction of the terrestrial catchment export is retained by the lakes and that lakes are a reservoir for microplastics.

Author Keywords: Atmospheric deposition, Microplastics, Ontario, Plastic pollution, Sinks, Sources

2022