Forestry

Short-term biogeochemical response of hardwood forest soils to wood ash additions in central Ontario

Type:
Names:
Creator (cre): Smith, Edward Philip, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Eimers, Catherine, Degree committee member (dgc): Sager, Eric, Degree granting institution (dgg): Trent University
Abstract:

The accelerated recovery of base-poor soils from the legacy effects of acidic deposition may be possible by applying industrial wood ash as a soil amendment. Wood ash may be an effective soil amendment due to its high alkalinity and concentrations of several essential nutrients, such as calcium, magnesium, potassium, and phosphorus, that are retained after the volatilization of the parent material. However, wood ash can also contain trace amounts of metals that could be released into the soil and soil solution. The short-term (<3 years) biogeochemical response of soils, microbial communities, and sugar maple (Acer saccharum Marsh.) trees were assessed following wood ash application at Porridge Lake, Ontario. The study design consisted of five blocks containing three treatment plots each (2.5, 5.0, 7.5 Mg ha-1) and a control. Soil solution pH, base cation, and trace metal concentrations were monitored for three years, using tension lysimeters at depths of 30 and 60 cm and zero-tension lysimeters for forest floor percolate within each plot. In the last year of the trial, soil, foliage, and fine root samples were collected and analyzed for trace elements. Also, soil samples were analyzed for the abundance of 16S and ITS DNA through metabarcoding to ascertain the microbial response to wood ash. Significant changes in soil solution pH were measured within the forest floor horizon in the first year of the trial. Significant increases in calcium (Ca), magnesium (Mg) and calcium/aluminum (Ca/Al) ratios were also observed in the second year of the trial, along with decreases in dissolved organic carbon (DOC), sulphate (SO4) and nitrate (NO3) in the LFH horizon. By the third year of the trial, significant increases in soil solution pH and potassium (K) concentrations and decreases in Al were observed to a depth of 30 cm. Changes in trace metal concentrations in soil water were notably variable, with concentrations of chromium, copper, lead, nickel, and selenium remaining unresponsive, whereas concentrations of cadmium, manganese and zinc decreased by the third year. The metalloid arsenic showed a significant increase in the third year of the trial but remained below regulatory guidelines, similar to all other trace metals. Soil measurements conducted in the third year of the trial showed positive pH responses in the FH horizon and increases in Ca and Mg in the Ah and Bm soil horizons, but foliar base cation and metal concentrations were unchanged. Diversity analysis on the soil prokaryotic and eukaryotic groups indicated increased bacterial alpha diversity in the FH horizon and bacterial dominance in the litter horizon. Analysis of relative abundance at the phylum level for prokaryotes and at the order for eukaryotes did not indicate any compositional shifts due to the wood ash treatments. Changes in the length and diameter of sugar maple and mycorrhizal fine root may point to pH shock being an issue at higher ash doses. The results from this study indicate that wood ash has a strong ameliorative effect on soil properties and does not pose a risk to soil communities. 

Author Keywords: DNA, mycorrhizae, soil acidication, soil amendments, soil solution, sugar maple

2023

Development of Forest Degradation Indicators from Long-term Trajectories of Multispectral Satellite Images, and their Projections into the Future under Climate Change, in Ontario, Canada

Type:
Names:
Creator (cre): Hoque, Md Mozammel, Thesis advisor (ths): Ponce-Hernandez, Raul, Degree committee member (dgc): Gibson, Carey, Degree committee member (dgc): Jones, Trevor, Degree granting institution (dgg): Trent University
Abstract:

ABSTRACT

Development of Forest Degradation Indicators from Long-term Trajectories of Multispectral Satellite Images, and their Projections into the Future under Climate Change, in Ontario, Canada

Md. Mozammel Hoque

Ontario forests are affected by natural and anthropogenic disturbances leading to forest degradation, which significantly impact local ecosystems, health, safety, and economy. This thesis develops a methodology for the continuous assessment, mapping, and monitoring of present and historic (1972–2020) forest disturbances, and future forest degradation trends and projections, using remote sensing data, ground measurements, and predictive models in an Ontario forested area. After testing four supervised classification algorithms, support vector machine was found to be the most robust, consistent, and effective for land cover classification. Seven vegetation indices derived from Landsat and MODIS platforms were used to derive forest degradation indicators (FDIs), which were combined into one composite forest degradation indicator (CFDI) for each year, using the principal component analysis image fusion approach. The CFDI was the most informative indicator. The computed FDIs from available large multispectral image stacks were statistically related to historical climate variables. These relationships were used to project future FDIs related to climate variables derived from General Circulation Models through multiple linear regression models. Spatially-explicit maps of relevant climatic variables and of long-term historical forest degradation were developed from the LandTrendr trajectory analysis. Climate variables P, MA1, MA2, and CFDI were strongly correlated, allowing for the development of a model with a high coefficient of determination, R2 (0.93), and low RMSE (0.28) to predict future values. Forest disturbances (as CFDI) were also monitored from 1972–2020. Overall, these relationships allowed for to the creation of spatially-explicit, long-term historical forest degradation maps derived from the Landtrendr trajectory analysis. Historical and future forest degradation maps identified the areas with projected high vulnerability to climate change, as well as the actual and potential changes in forest cover under climate change. The results indicated 2050 will experience an average temperature increase of 3.0°C, projected yearly decrease in precipitation of 109.5 mm, evapotranspiration increase of 73.0 mm, and moisture deficits of 28.47 mm (MA1) and 37.60 mm (MA2), leading to increased forest degradation.

Author Keywords: Climate change impacts, Forest degradation indicators, Forest disturbance and degradation, Land cover classification, Projections of 2050 forest degradation under climate change, Remote sensing technology

2024

The effects of in-stream woody debris from selective timber harvest on nutrient pools and dynamics within Precambrian Shield streams

Type:
Names:
Creator (cre): Jamieson, Tyler Jacob Ross, Thesis advisor (ths): Watmough, Shaun, Thesis advisor (ths): Eimers, Catherine, Degree committee member (dgc): Sager, Eric, Degree granting institution (dgg): Trent University
Abstract:

Timber harvest can influence the rate of transfer of organic matter from the terrestrial catchment to streams, which may have both direct and indirect effects on in-stream nutrient pools and dynamics. In the interest of developing sustainable forestry practices, the continued study of the effects of forestry on nutrient dynamics in aquatic systems is paramount, particularly in sensitive nutrient-poor oligotrophic systems. The goal of this study was to investigate the impacts of harvest-related woody debris on stream nutrient status in streams located in the Canadian Shield region of south-central Ontario. Surveys showed greater large (> 10 cm) and small (< 10 cm) woody debris dry masses and associated nutrient pools in streams located in recently (2013) selectively harvested catchments, when compared with catchments not harvested for at least 20 years. Experimental releases of flagging tape underlined the importance of woody debris as a mechanism of coarse particulate organic matter (CPOM) retention. Sediment surveys showed a significant exponential decline in both OM content and nutrients associated with coarse sediment with distance upstream from debris dams. Laboratory leaching experiments suggest that fresh woody debris may be an important short-term source of water-soluble nutrients, particularly phosphorus and potassium. This study suggests that woody debris from timber harvest is both a direct and indirect source of nutrients, as trapped wood and leaves that accumulate behind debris dams can augment stream nutrient export over long time periods.

Author Keywords: nutrient leaching, nutrient pools, organic matter retention, selection harvest, southern Ontario, woody debris

2017

Incidental Take and Population Dynamics of Nesting Birds in a Red Pine (Pinus resinosa) Plantation Under Single-Tree Selection Harvesting

Type:
Names:
Creator (cre): Fife, Ian, Thesis advisor (ths): Nol, Erica, Degree committee member (dgc): Abraham, Kenneth, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

I determined the direct influence of single-tree selection harvesting on the daily nest survival rates and nest success of 5 focal bird species within a monotypic red pine (Pinus resinosa) plantation on the western edge of the Oak Ridges Moraine in southern Ontario, Canada. I located and monitored 290 nests during the 2012 and 2013 breeding season. I used the logistic-exposure method to evaluate the daily nest survival rates of American Robin (Turdus migratorius), Eastern Wood-pewee (Contopus virens), Ovenbird (Seiurus aurocapilla), Rose-breasted Grosbeak (Pheucticus ludovicianus), and Red-eyed Vireo (Vireo olivaceus). Only five nests were destroyed as a result of forestry activity over the study period. Neither daily nest survival rates nor nest success of these focal species were substantially affected by single-tree selection harvesting. I also monitored the impact of single-tree selection harvesting on the density and territory size of 4 of 5 focal species. Ovenbird had a significantly smaller territory size but decreased density in the harvested areas. Although not significant, Eastern Wood-pewee and Red-eyed Vireo tended to have higher densities and larger territory sizes in harvested areas, whereas Rose-breasted Grosbeak showed a mixed effect as density was higher while territory size was smaller. Single-tree selection produces minor to moderate disturbance that takes place locally over a short period of time. As a result, nests that are indirectly disturbed by nearby harvesting, felling trees and mechanical operations and are not destroyed remain and adults do not appear to abandon eggs or young from the disturbance. Habitat alteration from harvesting of the general forest structure and especially the forest floor must be minimized in order to conserve forest bird species diversity. Further research examining incidental take using various intensities of single-tree selection harvesting would provide important insight into maintaining avian and forest diversity by means of forest management.

Author Keywords: daily nest survival rates, forest management, Incidental Take, nest success, red pine monotypic forest, single-tree selection harvesting

2015

A methodological framework for the assessment and monitoring of forest degradation under the REDD+ programme based on remote sensing techniques and field data

Type:
Names:
Creator (cre): Romero Sanchez, Martin Enrique, Thesis advisor (ths): Ponce Hernandez, Raul, Degree committee member (dgc): Franklin, Steven E., Degree committee member (dgc): Gibson, Carey, Degree granting institution (dgg): Trent University
Abstract:

In this thesis, a methodological framework for the assessment and monitoring of forest degradation based on remote sensing techniques and field data, as part of the REDD+ programme, is presented. The framework intends to support the implementation of a national Monitoring, Verification and Report (MRV) system in developing countries. The framework proposed an operational definition of forest degradation and a set of indicators, namely Canopy Cover (CC), Aboveground Biomass (AGB) and Net Primary Productivity (NPP), derived from remote sensing data. The applicability of the framework is tested in a sub-deciduous tropical forest in the Southeast of Mexico. The results from the application of the methodological framework showed that the higher rates of forest degradation, 1596-2865 ha·year-1, occur in areas with high population density. Estimations of aboveground biomass in these degraded areas span from 1 to 24 Mg·ha-1, with a rate of carbon fixation ranging from 130 to 246 gC·m2·year. The results also showed that 43 % of the forests of the study area remain with no evident signs of degradation, as detected by the indicators selected, during the period evaluated. The integration of the different elements conforming the methodological framework for the assessment and monitoring of forest degradation enabled the identification of areas that maintain a stable condition and areas that change over the period evaluated. The methodology outlined in this thesis also allows for the identification of the temporal and spatial distributions of forest degradation based on the indicators selected, and it is expected to serve as the basis for operations of the REDD+ programme with the appropriate adaptations to the area in turn.

Author Keywords: Forest degradation, Monitoring, REDD+, Remote Sensing, Tropical forest

2015