Environmental science

An Evaluation of Wastewater Treatment by Ozonation for Reductions in Micropollutant Toxicity to Fish

Type:
Names:
Creator (cre): Maya, Nicholas, Thesis advisor (ths): Metcalfe, Chris D, Degree committee member (dgc): Yargeau, Viviane, Degree committee member (dgc): Wallschläger, Dirk, Degree granting institution (dgg): Trent University
Abstract:

Micropollutants are discharged into the aquatic environment with industrial and domestic wastewater and these compounds may cause toxic effects in aquatic organisms. In this study, the toxic effects to fish of micropollutants extracted from ozonated and nonozonated municipal wastewater effluent (MWWE) were measured in order to assess the effectiveness of ozonation in reducing toxicity. Juvenile rainbow trout (Oncorhynchus mykiss) injected with extracts prepared from ozonated MWWE had significantly reduced induction of plasma vitellogenin (VTG), significantly reduced hepatic total glutathione (tGSH) levels and an elevated oxidized-to-total glutathione (GSSG-to-tGSH) ratio. Exposure of Japanese medaka (Oryzias latipes) embryos to extracts prepared from both ozonated and non-ozonated MWWE resulted in elevated developmental toxicity in both treatment groups. These results indicate that wastewater treatment by ozonation reduces the estrogenicity of wastewater, but treatment may induce oxidative stress and embryonic developmental toxicity due to the production of toxic by-products.

Author Keywords: Estrogenicity, Micropollutants, Oxidative stress, Ozonation, Toxic by-products, Wastewater

2016

Carbon Exchange along a Natural Gradient of Deciduous Shrub Coverage in the Low-Arctic

Type:
Names:
Creator (cre): Ge, Le, Thesis advisor (ths): Lafleur, Peter M, Degree committee member (dgc): Watmough, Shaun A, Degree committee member (dgc): Emery, Neil, Degree granting institution (dgg): Trent University
Abstract:

Arctic terrestrial ecosystems have experienced substantial structural and compositional changes in response to warming climate in recent decades, especially the expansion of shrub species in Arctic tundra. Climatic and vegetation changes could feedback to the global climate by changing the carbon balance of Arctic tundra. The objective of this thesis was to investigate the influence of increased shrub coverage on carbon exchange processes between atmosphere and the Arctic tundra ecosystem. In this study a space-for-time substitution was used, referred to as a shrub expansion "chronosequence", with three sites along a natural gradient of deciduous shrub coverage in the Canadian low Arctic. Leaf-level photosynthetic capacity (Amax) of dominating birch shrub Betula glandulosa (Michx.) was significantly higher (P<0.05) at the site where shrubs were more abundant and taller than at the other sites. For all sites, mean Amax in 2014 was significantly lower than in 2013, in part potentially due to differences in precipitation distribution. Bulk soil respiration (RS) rate was significantly higher (P<0.05) at the site with more shrubs compared with the other sites. The differences in RS across sites appeared to be driven by differences in soil physiochemical properties, such as soil nitrogen and soil bulk density rather than soil microclimate factors (e.g. soil temperature, moisture). The three sites were either annual CO2 sources (NEP<0) to the atmosphere or CO2 neutral, with strongest annual CO2 sources (-44.1±7.0 g C m-2) at the site with most shrubs. Overall this study suggests that shrubs tundra carbon balance will change with shrub expansion and that shrub ecosystems in the Arctic currently act as annual carbon sources or neutral to the atmospheric CO2 and further shrub expansion might strengthen the CO2 emissions, causing a positive feedback to the warming climate.

Author Keywords: arctic tundra, carbon exchange, climate change, photosynthetic capacity, shrub expansion, soil respiration

2016

Effects of biodiversity and lake environment on the decomposition rates of aquatic macrophytes in the Kawartha Lakes, Ontario

Type:
Names:
Creator (cre): Banks, Lauren K., Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Dorken, Marcel, Degree committee member (dgc): Sager, Eric, Degree granting institution (dgg): Trent University
Abstract:

Decomposition of aquatic macrophytes has an important role in defining lake carbon (C) storage and nutrient dynamics. To test how diversity impacts decomposition dynamics and site-quality effects, I first examined whether the decomposition rate of aquatic macrophytes varies with species richness. Generally, I found neutral effects of mixing, with initial stoichiometry of component species driving decomposition rates. Additionally, external lake conditions can also influence decomposition dynamics. Therefore, I assessed how the decomposition rate of a submersed macrophyte varies across a nutrient gradient in nine lakes. I found decomposition rates varied among lakes. Across all lakes, I found Myriophyllum decomposition rates and changes in stoichiometry to be related to both nutrients and water chemistry. During the incubation changes in detrital stoichiometry were related to lake P and decomposition rates. Aquatic plant community composition and stoichiometry could alter decomposition dynamics in moderately nutrient enriched lakes.

Author Keywords: Aquatic Plants, Decomposition, Diversity, Littoral, Macrophytes, Nutrients

2016

Effects of road salt sodium on soil: the influence of parent material

Type:
Names:
Creator (cre): Croucher, Kelli-Nicole, Thesis advisor (ths): Eimers, Catherine M., Degree committee member (dgc): Watmough, Shaun A., Degree committee member (dgc): Buttle, Jim, Degree granting institution (dgg): Trent University
Abstract:

While previous studies have focused on how road salt affects water quality and vegetation, limited research has characterized road salt distribution through soil and the resulting impacts. The potential for sodium (Na+) to be retained and impact soil physical and chemical properties is likely to vary depending on the soil's parent material, and more specifically on the extent of base saturation on the cation exchange complex. This thesis contrasted Na+ retention, impacts, and mobility in roadside soils in two different parent materials within southern Ontario. Soils were sampled (pits and deep cores) during fall 2013 and spring 2014 from two sites along highways within base-poor, Precambrian Shield soil and base-rich soil, respectively. Batch experiments were subsequently performed to investigate the influence of parent material and the effect of co-applied Ca2+-enriched grit on the longevity of Na+ retention in soils. Less Na+ is adsorbed upon the co-application of Ca2+, suggesting grit has a protective effect on soil by increasing cation exchange competition. Positive correlations between Na+ and pH, and negative correlations between Na+ and soil organic matter, % clay and base cations within Shield soils suggest that they are more vulnerable to Na+ impacts than calcareous soils due to less cation exchange competition. However, Na+ is more readily released from calcareous roadside soils, suggesting there is greater potential for Na+ transfer to waterways in regions dominated by calcareous soils.

Author Keywords: cation exchange, parent material, road salt, sodium retention, urban soil

2016

Acidification of lakes in northern Saskatchewan: An assessment of sensitivity and risk from acidic deposition

Type:
Names:
Creator (cre): Cathcart, Hazel, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Whitfield, Colin, Degree granting institution (dgg): Trent University
Abstract:

The emission of acid precursors by large point sources in Western Canada

(such as the Athabasca Oil Sands Region) has prompted studies into the possible impact to downwind aquatic and terrestrial ecosystems. Sensitivity of catchments to acidic deposition was estimated for the total lake population of northern Saskatchewan (n=89,947) using regression kriging. Under the Steady State Water Chemistry model, a range of 12-15% of the total catchment population was predicted to be in exceedance of critical loads under 2006 deposition levels and 6% of catchments were estimated to be very sensitive (pH below 6 and acid neutralizing capacity, alkalinity, calcium below 50 eqL-1). Temporal changes in soil and water chemistry estimated for 18 Alberta and Saskatchewan catchments using the Very Simple Dynamic and PROFILE models showed that changes in soil base saturation and lake acid neutralizing capacity between 1850 and 2100 were slight, declining 0.8% and 0.9% by 2012, respectively.

Author Keywords: acidification, critical loads, exceedance, PROFILE, regression kriging, VSD

2015

The Impact of Invasive Earthworms on Soil Respiration and Soil Carbon within Temperate Hardwood Forests

Type:
Names:
Creator (cre): Jennings, Bradley Wayne, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Beresford, David V, Degree committee member (dgc): Lafleur, Peter M, Degree granting institution (dgg): Trent University
Abstract:

Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global carbon cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C the forest floor, mineral soil, fine root biomass, litterfall and litter decomposition rates and total soil respiration (TSR) over a full year were measured at two invaded and one uninvaded deciduous forest sites in southern Ontario. The uninvaded site was approximately 300m from one of the invaded sites and a distinct invasion front between the sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, litter decomposition and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in soil C pools between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.

Author Keywords: Biological Invasions, Carbon, Earthworms, Forest Ecosystems, Forest Floor, Soil Respiration

2016

Impact of Wetland Disturbance on Phosphorus Loadings to Lakes

Type:
Names:
Creator (cre): Pinder, Kieran Chris, Thesis advisor (ths): Eimers, M. C, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Dillon, Peter J, Degree granting institution (dgg): Trent University
Abstract:

Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region.

Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland

2015

Assessing the Potential for Contamination of Lakes from Upwelling of Arsenic-Laden Groundwater Through Sediments

Type:
Names:
Creator (cre): Lock, Alan S., Thesis advisor (ths): Wallschläger, Dirk, Thesis advisor (ths): Belzile, Nelson, Degree committee member (dgc): Belzile, Nelson, Degree committee member (dgc): Gueguen, Celine, Degree granting institution (dgg): Trent University
Abstract:

A bedrock fracture hosting arsenic (As) contaminated groundwater was suspected to be transported to Ramsey Lake, a drinking water resource for more than 50,000 residents of Sudbury, Ontario. A high resolution, spatial, water quality mapping technique using an underwater towed vehicle (UTV) was used to identify sources of upwelling groundwater into lake water and localize the upwelling As contaminated groundwater vent site. The top 7 cm of lake sediments (in-situ) at this vent site were observed to adsorb 93 % of the dissolved As, thus inhibiting lake water quality degradation from this contaminant source. Sediment samples from this location were used in laboratory experiments to assess the potential for this system to become a source of As contamination to Ramsey Lake water quality and elucidate As(III) fractionation, transformation and redistribution rates and processes during aging. Arsenic speciation is important because As(III) has been shown to be more toxic than As(V). To accomplish this a sequential extraction procedure (SEP) that maintains As(III) and As(V) speciation in (sub)oxic sediments and soils was validated for the operationally defined fractions: easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and the residual fraction for total As because the characteristics of the reagents required to extract the final fraction do not maintain As species.

Batch reaction experiments using sediment spiked with As(III) or As(V) and aged for up to 32 d were sequentially extracted and analysed for As(III) and As(V). Consecutive reaction models illustrate As(III) is first adsorbed to the sediment then oxidized to As(V). Fractionation analyses show As(III) most rapidly adsorbs to the easily exchangeable fraction where it is oxidized and redistributes to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As(III) adsorbed to the amorphous and crystalline Fe oxide bound fractions is less efficient and possibly inhibited. Select samples amended with goethite provide evidence supporting Mn(II) oxidation is catalyzed by the goethite surface, thus increasing As(III) oxidation by Mn(III/IV) complexed with the strongly sorbed fraction. Although As immobilization through groundwater sediment interactions may be inhibited by increased ion activity, particularly phosphate or lake eutrophication, this threat in Ramsey Lake is likely low.

Author Keywords: arsenic, fractionation, modelling, redistribution, speciation, water quality mapping

2017

Anthropogenic particles and microplastics in headwater lake catchments in Muskoka-Haliburton, Canada

Type:
Names:
Creator (cre): Welsh, Brittany, Thesis advisor (ths): Aherne, Julian, Degree granting institution (dgg): Trent University
Abstract:

Microplastics, plastic particles less than 5 mm in diameter, are ubiquitous in the environment. This study estimated the abundance of microplastics (MP) in atmospheric deposition from four background monitoring stations in Muskoka-Haliburton, south-central Ontario, Canada and quantified the fate of microplastics to three background headwater lake catchments in Muskoka-Haliburton. Microplastics were observed across all sample media with polyethylene terephthalate and polyamide being predominant. The average atmospheric deposition of anthropogenic particles was 57 particles/m2/day with a plastic deposition rate of 7 MP/m2/day. Atmospheric deposition represented the highest daily microplastic flux rate to the three headwater lake catchments compared, 1.5 to 4 times greater than the flux rate for the inflow streams suggesting that atmospheric deposition can account for all the inflowing microplastics. A large fraction of the microplastics from atmospheric deposition (41 – 73%) were retained in the terrestrial catchment and there was a high retention of microplastics in each of the study lakes (1.44 – 7.39 million MP/day; 30 – 45%) suggesting that a large fraction of the terrestrial catchment export is retained by the lakes and that lakes are a reservoir for microplastics.

Author Keywords: Atmospheric deposition, Microplastics, Ontario, Plastic pollution, Sinks, Sources

2022

Factors affecting road mortality of reptiles and amphibians on the Bruce Peninsula

Type:
Names:
Creator (cre): Stinnissen, Tricia, Thesis advisor (ths): Schaefer, James A, Degree committee member (dgc): Nocera, Joe, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Road mortality is one of the leading causes of global population declines in reptiles and amphibians. Stemming losses from reptile and amphibian road mortality is a conservation priority and mitigation is a key recovery measure. I developed a model of road mortalities relative to non-­‐mortalities, based on predictors varying across space (road surface type, traffic volume, speed limit, distance to wetland) and time (weather conditions, traffic volume). Herpetofauna road mortalities were recorded during daily bicycle and vehicle surveys to investigate the impact of roads on reptiles and amphibians within the Bruce Peninsula, Ontario in 2012 and 2013. A total of 2541 observations of herpetofauna on roads were recorded, 79% of which were dead. The major factor influencing turtle road mortality was proximity to the nearest wetland and dates early in the season (spring). For the Massasauga, high daily temperatures and low daily precipitation were associated with road mortality. The major factors driving colubrid snake mortality were also high daily temperature, low daily precipitation, as well as low speeds and paved roads. Frog and toad mortality was driven by proximity to wetland and late summer dates. These models will increase our understanding of factors affecting road losses of herpetofauna and serve as a basis for planned, experimental mitigation within the Bruce Peninsula.

Author Keywords: amphibians, hotspot, mitigation, reptiles, road ecology, road mortality

2015