Biology
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies.
Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
Contemporary adaptive shifts in the physiology and life history of Pumpkinseed (Lepomis gibbosus) introduced into a warm climate
Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates.
Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology
Shorebird Habitat Use and Foraging Ecology on Bulls Island, South Carolina During the Non-Breeding Season
Recent declines in North American shorebird populations could be linked to habitat loss on the non-breeding grounds. Sea-level rise and increased frequency of coastal storms are causing significant erosion of barrier islands, thereby threatening shorebirds who rely on shoreline habitats for foraging. I conducted shorebird surveys on Bulls Island, South Carolina in the winters of 2018 and 2019 and examined habitat selection and foraging behaviour in Dunlin (Calidris alpina), Sanderling (Calidris alba), Semipalmated Plovers (Charadrius semipalmatus), and Piping Plovers (Charadrius melodus). Area, tidal stage, and invertebrate prey availability were important determinants of shorebird abundance, behaviour, and distribution. My study highlights the importance of Bulls Island's habitat heterogeneity to supporting a diverse community of non-breeding shorebirds. Considering both the high rate of erosion and the increased frequency of disturbance along the shoreline of the island, intertidal habitats should be monitored to predict negative effects of changes in habitat composition and area on non-breeding shorebirds.
Author Keywords: foraging behaviour, habitat loss, habitat selection, invertebrate prey, non-breeding, shorebirds
Discriminating grey wolf (Canis lupus) predation events in a multi-prey system in central Saskatchewan
I investigated if spatio-temporal behaviour of grey wolves (Canis lupus) determined via GPS collar locations could be used to discriminate predation events generally, and among prey species, in Prince Albert National Park during winter, 2013-2017. I used characteristics of spatio-temporal GPS clusters to develop a predictive mixed-effect logistic regression model of which spatial clusters of locations were wolf kill sites. The model suffered a 60 % omission error when tested with reserved data due to the prevalence of deer kills with correspondingly low handling time. Next, I found a multivariate difference in the percentage of habitat classes used by wolves in the 2 hours preceding predation events of different prey species, suggesting that wolf habitat use reflects prey selection at a fine-scale. My results highlight the difficulty and future potential for remoting discriminating wolf predation events via GPS collar locations in multi-prey ecosystems.
Author Keywords: Canis lupus, GPS clusters, GPS collars, grey wolf, habitat use, predation
The Effects of Local, Landscape, and Temporal Variables on Bobolink Nest Survival in Southern Ontario
Populations of grassland birds, including the Bobolink (Dolichonyx oryzivorus), are experiencing steep declines due to losses of breeding habitat, land use changes, and agricultural practices. Understanding the variables affecting reproductive success can aid conservation of grassland species. I investigated 1) whether artificial nest experiments accurately estimate the impacts of cattle on the daily survival rate of Bobolink nests and 2) which local, landscape, and temporal variables affect daily survival rate of Bobolink nests in Southern Ontario. I replicated an artificial nest experiment performed in 2012 and 2015 to compare the daily survival rate of artificial and natural nests at multiple stocking rates (number of cattle × days × ha-1). I also monitored Bobolink nests and modeled daily survival rate using local variables (e.g., stocking rate, field use, patch area), landscape variables (e.g., percent forest within 2, 5, and 10 km), and temporal variables (e.g., year, date of season). Results indicate that artificial nest experiments using clay shooting targets overestimated the impacts of stocking rate on the daily survival rate of Bobolink nests. With natural nests, region (confounded by year and field use), stocking rate, and date of season were the strongest predictors of daily survival rate; with stocking rate and date of season both having a negative effect. Management should focus on conserving pastures with low stocking rates (< 40 cattle × days × ha-1), late-cut hayfields, fallow fields, and other grasslands to protect breeding grounds for the Bobolink and other declining grassland bird species.
Author Keywords: Bobolink, Daily survival rate, landscape variables, local variables, Nest survival, temporal variables
Biosynthesis and impact of cytokinins on growth of the oyster mushroom, Pleurotus ostreatus
The oyster mushroom, Pleurotus ostreatus, is one of the most widely cultivated edible basidiomycetes. It has gained increased attention for its economic, environmental, and medicinal properties. While a lot is known about cytokinins (CKs) and their actions at the molecular and cellular levels in plants, much less is known about the function of CKs in other kingdoms. Cytokinins, which have been detected in several fungal species, play a role in pathogenic attack against plants or during plant growth promotion by plant beneficial microbes; however, the role of CKs in fungal physiology, separate from plant associations remains largely unknown. This thesis focuses on the occurrence of fungal-derived CKs in P. ostreatus when grown in vitro as submerged or aerial mycelium. Cytokinin profiling by UHPLC-HRMS/MS revealed that P. ostreatus produces CKs and that the tRNA degradation pathway is the main source of these molecules. CK dynamics within fungal growth supported previous evidence, which suggested that tRNA degradation products have a role in the physiological development of fungi for which CKs act as fungal growth regulators. A second component of the thesis demonstrated that P. ostreatus responds to exogenous applications of aromatic and isoprenoid CKs and their effects were dependent on the dose and CK type. N6-Benzyladenine (BAP), Kinetin (KIN), N6-isopentenyladenine (iP), and trans-zeatin (tZ) bioassays revealed hormone-type responses (hormesis: biphasic response). At low doses, mycelium growth could be stimulated, whereas, at high doses only inhibitory effects were observed. This stimulation/inhibition was observed whether the measured response was an increase/decrease of aerial mycelium colony diameter, biomass accumulation or a change in mycelium morphology as compared to the controls. Results indicated there is potential to alter mycelium growth and development of P. ostreatus; thus, CKs may play the role of a "mycohormone" and may be specifically helpful for medicinal fungi by increasing growth and efficiency to produce many biologically active substances with valuable medical and environmental applications.
Author Keywords: cytokinins, fungal-derived CKs, hormesis, mycelium, mycohormone, Pleurotus ostreatus
Assessing Molecular and Ecological Differentiation in Wild Carnivores
Wild populations are notoriously difficult to study due to confounding stochastic variables. This thesis tackles two components of investigating wild populations. The first examines the use of niche modeling to quantify macro-scale predator-prey relationships in canid populations across eastern North America, while the second examines range-wide molecular structure in Canada lynx. The goal of the first chapter is to quantify niche characteristics in a Canis hybrid zone of C. lupus, C. lycaon, and C. latrans to better understand the ecological differentiation of these species, and to assess the impacts of incorporating biotic interactions into species distribution models. The goal of the second chapter is to determine if DNA methylation, an epigenetic marker that modifies the structure of DNA, can be used to differentiate populations, and might be a signature of local adaptation. Our results indicated that canids across the hybrid zone in eastern North America exhibit low levels of genetic and ecological differentiation, and that the importance of biotic interactions are largely lost at large spatial scales. We also identified cryptic structure in methylation patterns in Canada lynx populations, which suggest signatures of local adaptation, and indicate the utility of DNA methylation as a marker for investigating adaptive divergence.
Author Keywords: Ecological Epigenetics, Ecological Genetics, SDM
Bank Swallow (Riparia riparia) Breeding in Aggregate Pits and Natural Habitats
I examined Bank Swallow (Riparia riparia) colony persistence and occupancy, in lakeshore, river and man-made aggregate pit habitat. Habitat persistence was highest on the lakeshore and lowest in aggregate pits, likely due to annual removal and relocation of aggregate resources. Bank Swallow colonies in aggregate pit sites were more likely to persist if a colony was larger or if burrows were located higher on the nesting face. I also compared nest productivity and health factors of Bank Swallows in lakeshore and aggregate pit habitats. While clutch size was the same in both habitat types, the number of fledglings from successfully hatched nests was significantly higher in aggregate pit sites than from lakeshore sites. Mass of fledgling Bank Swallows did not differ significantly between habitat types, however mass of adults from aggregate pits decreased significantly over the nesting season. Parasite loads on fledgling Bank Swallows were significantly lower in aggregate pits than in lakeshore sites. According to these indicators, aggregate pits appear to provide equivalent or higher quality habitat for Bank Swallows than the natural lakeshore sites, making them adequate and potentially key for this species' recovery. Aggregate pit operators can manage for swallows by (1) creating longer, taller faces to attract birds and decrease predation, and (2) supplementing their habitat with water sources to encourage food availability.
Author Keywords: Aerial insectivore, aggregate pits, Bank Swallow, colony persistence, ectoparasites, substitute habitat
Habitat Preferences and Feeding Ecology of Blackfin Cisco (Coregonus nigripinnis) in Northern Algonquin Provincial Park
Blackfin Cisco (Coregonus nigripinnis), a deepwater cisco species once endemic to the Laurentian Great Lakes, was discovered in Algonquin Provincial Park in four lakes situated within a drainage outflow of glacial Lake Algonquin. Blackfin habitat preference was examined by analyzing which covariates best described their depth distribution using hurdle models in a multi-model approach. Although depth best described their distribution, the nearly isothermal hypolimnion in which Blackfin reside indicated a preference for cold-water habitat. Feeding structure differentiation separated Blackfin from other coregonines, with Blackfin possessing the most numerous (50-66) gill rakers, and, via allometric regression, the longest gill rakers and lower gill arches. Selection for feeding efficiency may be a result of Mysis diluviana affecting planktonic size structure in lakes containing Blackfin Cisco, an effect also discovered in Lake Whitefish (Coregonus clupeaformis). This thesis provides insight into the habitat preferences and feeding ecology of Blackfin and provides a basis for future study.
Author Keywords: allometric regression, blackfin cisco, habitat, hurdle models, lake whitefish, mysis
Assessing Canada Lynx Dispersal Across an Elevation Barrier: Genetic Structure in Light of Habitat
Mountain ranges are often thought to restrict movement of wildlife, yet previous studies evaluating the role of the Rocky Mountains as a dispersal barrier for Canada lynx (Lynx canadensis) have been contradictory. Our study uses neutral microsatellite loci to evaluate the role of the Rocky Mountains as a barrier to gene flow for lynx. Although lynx exhibited low genetic differentiation, we detected a limited effect of the mountains. Furthermore, we inferred the role played by landscape variables in gene flow (genetic differentiation predicted by landscape resistance). Limited gene flow most strongly related to resistance from physical factors (low snow cover and elevation), rather than other topographic and ecological factors (high terrain roughness, low forest cover, low habitat suitability, and geographic distance). Structural connectivity was a relatively poor predictor of functional connectivity. Overall, the Rockies represent an area of reasonably high functional connectivity for lynx, with limited resistance to gene flow.
Author Keywords: Canada lynx, connectivity, gene flow, genetic structure, landscape genetics, Rocky mountains