Environmental and Life Sciences

An Evaluation of Wastewater Treatment by Ozonation for Reductions in Micropollutant Toxicity to Fish

Type:
Names:
Creator (cre): Maya, Nicholas, Thesis advisor (ths): Metcalfe, Chris D, Degree committee member (dgc): Yargeau, Viviane, Degree committee member (dgc): Wallschläger, Dirk, Degree granting institution (dgg): Trent University
Abstract:

Micropollutants are discharged into the aquatic environment with industrial and domestic wastewater and these compounds may cause toxic effects in aquatic organisms. In this study, the toxic effects to fish of micropollutants extracted from ozonated and nonozonated municipal wastewater effluent (MWWE) were measured in order to assess the effectiveness of ozonation in reducing toxicity. Juvenile rainbow trout (Oncorhynchus mykiss) injected with extracts prepared from ozonated MWWE had significantly reduced induction of plasma vitellogenin (VTG), significantly reduced hepatic total glutathione (tGSH) levels and an elevated oxidized-to-total glutathione (GSSG-to-tGSH) ratio. Exposure of Japanese medaka (Oryzias latipes) embryos to extracts prepared from both ozonated and non-ozonated MWWE resulted in elevated developmental toxicity in both treatment groups. These results indicate that wastewater treatment by ozonation reduces the estrogenicity of wastewater, but treatment may induce oxidative stress and embryonic developmental toxicity due to the production of toxic by-products.

Author Keywords: Estrogenicity, Micropollutants, Oxidative stress, Ozonation, Toxic by-products, Wastewater

2016

Identification and Quantification of Organic Selenium Species Produced by Microbiological Activity in Freshwater Environments

Type:
Names:
Creator (cre): LeBlanc, Kelly Lynn, Thesis advisor (ths): Wallschlaeger, Dirk, Degree committee member (dgc): Evans, R. Douglas, Degree committee member (dgc): Belzile, Nelson, Degree granting institution (dgg): Trent University
Abstract:

Despite being an essential nutrient at trace levels, selenium can be devastating to aquatic environments when present in excess. There is no apparent correlation between total aqueous selenium concentrations and observed toxic effects because bioaccumulation varies over several orders of magnitude depending on the chemical species of selenium and the biological species present in the lowest trophic level of the aquatic food chain. Despite being used in toxicity models due to its high bioavailability, free selenomethionine had not been found previously in the environment outside of a biological entity. Here, it is confirmed that selenomethionine is produced during the biological treatment of selenium-contaminated wastewater, and released in the effluent along with other discrete organic selenium species, including selenomethionine oxide.

This identification followed the development of a rigorous preconcentration and cleanup procedure, allowing for the analysis of these organic selenium species in high-ionic strength matrices. A newly optimized anion-exchange chromatographic separation was coupled to inductively-coupled plasma mass spectrometry for the simultaneous quantification of these organic selenium species along with the more ubiquitous selenium oxyanions, selenite and selenate. This separation method was also coupled to electrospray tandem mass spectrometry for structural confirmation of selenomethionine and selenomethionine oxide. High resolution orbitrap mass spectrometry was used to identify another oxidation product of selenomethionine – a cyclic species which was tentatively identified, by coelution, in a selenium-contaminated river water sample. The production and release of selenomethionine, selenomethionine oxide, Se-(methyl) selenocysteine, and methyl selenic acid were observed for various laboratory algal cultures.

Once the presence of free selenomethionine in a water system was confirmed, factors affecting its uptake into algal cultures were examined. The uptake of selenomethionine into Scenedesmus obliquus was noted to be significantly higher under low nitrate conditions, where it was incorporated into selenium-containing proteins more readily than at higher nitrate conditions where other metabolites were produced. With the increasing popularity of biological treatment systems for the remediation of selenium-contaminated waters, these observations, combined with existing knowledge, could be used to make predictions regarding the potential toxicity of selenium in various environmental scenarios.

Author Keywords: bioremediation, electrospray mass spectrometry, inductively-coupled plasma mass spectrometry, selenium, selenoamino acids, selenomethionine

2016

Carbon Exchange along a Natural Gradient of Deciduous Shrub Coverage in the Low-Arctic

Type:
Names:
Creator (cre): Ge, Le, Thesis advisor (ths): Lafleur, Peter M, Degree committee member (dgc): Watmough, Shaun A, Degree committee member (dgc): Emery, Neil, Degree granting institution (dgg): Trent University
Abstract:

Arctic terrestrial ecosystems have experienced substantial structural and compositional changes in response to warming climate in recent decades, especially the expansion of shrub species in Arctic tundra. Climatic and vegetation changes could feedback to the global climate by changing the carbon balance of Arctic tundra. The objective of this thesis was to investigate the influence of increased shrub coverage on carbon exchange processes between atmosphere and the Arctic tundra ecosystem. In this study a space-for-time substitution was used, referred to as a shrub expansion "chronosequence", with three sites along a natural gradient of deciduous shrub coverage in the Canadian low Arctic. Leaf-level photosynthetic capacity (Amax) of dominating birch shrub Betula glandulosa (Michx.) was significantly higher (P<0.05) at the site where shrubs were more abundant and taller than at the other sites. For all sites, mean Amax in 2014 was significantly lower than in 2013, in part potentially due to differences in precipitation distribution. Bulk soil respiration (RS) rate was significantly higher (P<0.05) at the site with more shrubs compared with the other sites. The differences in RS across sites appeared to be driven by differences in soil physiochemical properties, such as soil nitrogen and soil bulk density rather than soil microclimate factors (e.g. soil temperature, moisture). The three sites were either annual CO2 sources (NEP<0) to the atmosphere or CO2 neutral, with strongest annual CO2 sources (-44.1±7.0 g C m-2) at the site with most shrubs. Overall this study suggests that shrubs tundra carbon balance will change with shrub expansion and that shrub ecosystems in the Arctic currently act as annual carbon sources or neutral to the atmospheric CO2 and further shrub expansion might strengthen the CO2 emissions, causing a positive feedback to the warming climate.

Author Keywords: arctic tundra, carbon exchange, climate change, photosynthetic capacity, shrub expansion, soil respiration

2016

Elemental Variation in Daphnia: Nutritional, Genetic, and Environmental Factors

Type:
Names:
Creator (cre): Prater, Clay, Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Murray, Dennis, Degree committee member (dgc): Wilson, Chris, Degree granting institution (dgg): Trent University
Abstract:

Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress.

Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton

2016

Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin

Type:
Names:
Creator (cre): Lukaszewicz, Brian, Thesis advisor (ths): Rafferty, Steven P, Degree committee member (dgc): Saville, Barry J, Degree committee member (dgc): Yee, Janet, Degree granting institution (dgg): Trent University
Abstract:

The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine's role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket.

Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis

2016

Effects of biodiversity and lake environment on the decomposition rates of aquatic macrophytes in the Kawartha Lakes, Ontario

Type:
Names:
Creator (cre): Banks, Lauren K., Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Dorken, Marcel, Degree committee member (dgc): Sager, Eric, Degree granting institution (dgg): Trent University
Abstract:

Decomposition of aquatic macrophytes has an important role in defining lake carbon (C) storage and nutrient dynamics. To test how diversity impacts decomposition dynamics and site-quality effects, I first examined whether the decomposition rate of aquatic macrophytes varies with species richness. Generally, I found neutral effects of mixing, with initial stoichiometry of component species driving decomposition rates. Additionally, external lake conditions can also influence decomposition dynamics. Therefore, I assessed how the decomposition rate of a submersed macrophyte varies across a nutrient gradient in nine lakes. I found decomposition rates varied among lakes. Across all lakes, I found Myriophyllum decomposition rates and changes in stoichiometry to be related to both nutrients and water chemistry. During the incubation changes in detrital stoichiometry were related to lake P and decomposition rates. Aquatic plant community composition and stoichiometry could alter decomposition dynamics in moderately nutrient enriched lakes.

Author Keywords: Aquatic Plants, Decomposition, Diversity, Littoral, Macrophytes, Nutrients

2016

Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)

Type:
Names:
Creator (cre): Hoffman, Jordan Michael, Thesis advisor (ths): White, Bradley N, Degree committee member (dgc): Nocera, Joe, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct.

Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics

2015

Effects of road salt sodium on soil: the influence of parent material

Type:
Names:
Creator (cre): Croucher, Kelli-Nicole, Thesis advisor (ths): Eimers, Catherine M., Degree committee member (dgc): Watmough, Shaun A., Degree committee member (dgc): Buttle, Jim, Degree granting institution (dgg): Trent University
Abstract:

While previous studies have focused on how road salt affects water quality and vegetation, limited research has characterized road salt distribution through soil and the resulting impacts. The potential for sodium (Na+) to be retained and impact soil physical and chemical properties is likely to vary depending on the soil's parent material, and more specifically on the extent of base saturation on the cation exchange complex. This thesis contrasted Na+ retention, impacts, and mobility in roadside soils in two different parent materials within southern Ontario. Soils were sampled (pits and deep cores) during fall 2013 and spring 2014 from two sites along highways within base-poor, Precambrian Shield soil and base-rich soil, respectively. Batch experiments were subsequently performed to investigate the influence of parent material and the effect of co-applied Ca2+-enriched grit on the longevity of Na+ retention in soils. Less Na+ is adsorbed upon the co-application of Ca2+, suggesting grit has a protective effect on soil by increasing cation exchange competition. Positive correlations between Na+ and pH, and negative correlations between Na+ and soil organic matter, % clay and base cations within Shield soils suggest that they are more vulnerable to Na+ impacts than calcareous soils due to less cation exchange competition. However, Na+ is more readily released from calcareous roadside soils, suggesting there is greater potential for Na+ transfer to waterways in regions dominated by calcareous soils.

Author Keywords: cation exchange, parent material, road salt, sodium retention, urban soil

2016

Acidification of lakes in northern Saskatchewan: An assessment of sensitivity and risk from acidic deposition

Type:
Names:
Creator (cre): Cathcart, Hazel, Thesis advisor (ths): Aherne, Julian, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Whitfield, Colin, Degree granting institution (dgg): Trent University
Abstract:

The emission of acid precursors by large point sources in Western Canada

(such as the Athabasca Oil Sands Region) has prompted studies into the possible impact to downwind aquatic and terrestrial ecosystems. Sensitivity of catchments to acidic deposition was estimated for the total lake population of northern Saskatchewan (n=89,947) using regression kriging. Under the Steady State Water Chemistry model, a range of 12-15% of the total catchment population was predicted to be in exceedance of critical loads under 2006 deposition levels and 6% of catchments were estimated to be very sensitive (pH below 6 and acid neutralizing capacity, alkalinity, calcium below 50 eqL-1). Temporal changes in soil and water chemistry estimated for 18 Alberta and Saskatchewan catchments using the Very Simple Dynamic and PROFILE models showed that changes in soil base saturation and lake acid neutralizing capacity between 1850 and 2100 were slight, declining 0.8% and 0.9% by 2012, respectively.

Author Keywords: acidification, critical loads, exceedance, PROFILE, regression kriging, VSD

2015

Adaptive Genetic Markers Reveal the Biological Significance and Evolutionary History of Woodland Caribou (Rangifer tarandus caribou) Ecotypes

Type:
Names:
Creator (cre): Marques, Adam Joseph Doncheff, Thesis advisor (ths): Wilson, Paul J, Thesis advisor (ths): Abraham, Ken F, Degree committee member (dgc): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

Migratory and sedentary ecotypes are phenotypic distinctions of woodland caribou. I explored whether I could distinguish between these ecotypes in Manitoba and Ontario using genetic signatures of adaptive differentiation. I anticipated that signatures of selection would indicate genetic structure and permit ecotype assignment of individuals. Cytochrome-b, a functional portion of the mitochondrial genome, was tested for evidence of adaptation using Tajima's D and by comparing variations in protein physiology. Woodland caribou ecotypes were compared for evidence of contemporary adaptive differentiation in relation to mitochondrial lineages. Trinucleotide repeats were also tested for differential selection between ecotypes and used to assign individuals to genetic clusters. Evidence of adaptive variation in the mitochondrial genome suggests woodland caribou ecotypes of Manitoba and Ontario corresponded with an abundance of functional variation. Woodland caribou ecotypes coincide with genetic clusters, and there is evidence of adaptive differentiation between migratory caribou and certain sedentary populations. Previous studies have not described adaptive variation in caribou using the methods applied in this study. Adaptive differences between caribou ecotypes suggest selection may contribute to the persistence of ecotypes and provides new genetic tools for population assessment.

Author Keywords: Adaptation, Cytochrome-B, Ecotype, RANGIFER TARANDUS CARIBOU, Selection, TRINUCLEOTIDE REPEAT

2015