Environmental and Life Sciences

An Assessment of Spatial Trends in the Accumulation of Oil Sands Related Metals in the Clearwater River Valley and Temporal Trends in Six Northern Saskatchewan Lakes

Type:
Names:
Creator (cre): MacDermid, Findlay H., Thesis advisor (ths): Dillon, Peter, Degree committee member (dgc): Watmough, Shaun, Degree committee member (dgc): Ahearne, Julian, Degree granting institution (dgg): Trent University
Abstract:

The objective of this thesis was to assess current spatial trends and historic trends in the accumulation of trace metals related to the Athabasca Oil Sands Region (AOSR). The AOSR hosts some of the largest industrial developments in Canada, yet relatively little is known about the transport and fate of trace metal emissions from the region – particularly in the relatively remote areas to the east of the AOSR. Lichens are widely used as biomonitors and are employed in this thesis to assess the range of metals deposition within the Clearwater River and Athabasca River Valleys. Lake sediment cores can retain a historical record of the long-range transport and deposition of metals but can also respond to large regional metal emissions sources. This thesis used lake sediment cores to assess temporal trends in metals accumulation in six road accessible lakes in NW Saskatchewan that are likely to be used by local residents. Results show that metal concentrations (V, Co, Cu, Ni, Pb, Zn, Zr and Cd ) in lichen decline exponentially with distance from the AOSR and approach background levels within a few kilometers . Results from lake sediment cores show that there was no evidence that metal concentrations had increased due to industrial activities in the AOSR.

Author Keywords: Air Emissions, Lakes, Lichens, Oil Sands, Saskatchewan, Trace Metals

2016

The Impact of Invasive Earthworms on Soil Respiration and Soil Carbon within Temperate Hardwood Forests

Type:
Names:
Creator (cre): Jennings, Bradley Wayne, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Beresford, David V, Degree committee member (dgc): Lafleur, Peter M, Degree granting institution (dgg): Trent University
Abstract:

Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global carbon cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C the forest floor, mineral soil, fine root biomass, litterfall and litter decomposition rates and total soil respiration (TSR) over a full year were measured at two invaded and one uninvaded deciduous forest sites in southern Ontario. The uninvaded site was approximately 300m from one of the invaded sites and a distinct invasion front between the sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, litter decomposition and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in soil C pools between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.

Author Keywords: Biological Invasions, Carbon, Earthworms, Forest Ecosystems, Forest Floor, Soil Respiration

2016

Impact of Wetland Disturbance on Phosphorus Loadings to Lakes

Type:
Names:
Creator (cre): Pinder, Kieran Chris, Thesis advisor (ths): Eimers, M. C, Thesis advisor (ths): Watmough, Shaun A, Degree committee member (dgc): Dillon, Peter J, Degree granting institution (dgg): Trent University
Abstract:

Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region.

Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland

2015

The effects of parasitism on consumer-driven nutrient recycling

Type:
Names:
Creator (cre): Narr, Charlotte, Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Burness, Gary, Degree committee member (dgc): Sutcliffe, Jim, Degree granting institution (dgg): Trent University
Abstract:

Daphnia are keystone consumers in many pelagic ecosystems because of their central role in nutrient cycling. Daphnia are also frequently infected, and the parasites causing these infections may rival their hosts in their ability to regulate ecosystem processes. Therefore, parasitic exploitation of Daphnia may alter nutrient cycling in pelagic systems. This thesis integrates existing knowledge regarding the exploitation of Daphnia magna by 2 endoparasites to predict parasite-induced changes in the nutrient cycling of infected hosts and ecosystems. In chapter 1, I I contextualizing the integration of these themes by reviewing the development of the fields of elemental stoichiometry and parasitology. In chapter 2, we show how the bacterial parasite, Pasteuria ramosa, increased the nitrogen (N) and phosphorus (P) release rates of D. magna fed P-poor diets. We used a mass-balance nutrient release model to show that parasite-induced changes in host nutrient accumulation rates and diet-specific changes in host ingestion rates were responsible for the accelerated nutrient release rates that we observed. In chapter 3, we extended our examination of the nutrient mass balance of infected D. magna to include another parasite, the microsporidian H. tvaerminnensis. We found differences in the effects of these two parasites on host nutrient use as well as support for the hypothesis that parasite-induced changes in Daphnia N release are caused by the effects of infection on Daphnia fecundity. In chapter 4, we examined the relationship between P concentrations and the presence and prevalence of H. tvaerminnensis in rock pools along the Baltic Sea. We found that particulate P concentrations were negatively associated with the prevalence of this parasite, a result that is consistent with the increase in P sequestration of H. tvaerminnensis-infected Daphnia that we observed in chapter 3. I discuss the potential implications of the work presented in chapters 2-4 for other parasite-host systems and ecosystems in chapter 5. Overall, the research presented here suggests that parasite-induced changes in host nutrient use may affect the availability of nutrients in the surrounding environment, and the magnitude of this effect may be linked to parasite-induced reductions in fecundity for many invertebrate hosts.

Author Keywords: consumer, ingestion rates, mass-balance, nutrient-recycling, parasitism, phosphorus

2016

Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)

Type:
Names:
Creator (cre): McKay, Michelle Meredith, Thesis advisor (ths): Wilson, Paul J, Thesis advisor (ths): Bowman, Jeff, Degree committee member (dgc): Freeland, Joanna R, Degree granting institution (dgg): Trent University
Abstract:

The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism's ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes.

Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion

2016

In situ measurements of trace metal species in the Athabasca and Mackenzie Rivers using diffusive gradient in thin films (DGT) devices

Type:
Names:
Creator (cre): Zhu, Yu, Thesis advisor (ths): Gueguen, Celine, Degree committee member (dgc): Koprivnjak, Jean-François, Degree committee member (dgc): Aherne, Julian, Degree granting institution (dgg): Trent University
Abstract:

This study assesses the bioavailable metal (Cu, Ni, Zn, Pb) species in the Athabasca-Mackenzie watersheds using diffusive gradient in thin films (DGT) devices. Metal toxicity is not only based on the concentration of metal in natural waters, but also on the nature of metal species. Four main forms in aquatic systems are: free ion, inorganic species, DOM bound (humic) species and metal colloidal species. The free ion and inorganic species and very small humic species are known as DGT-labile species and, are considered to be more bioavailable to micro-organisms due to the size and thus may be toxic to microorganisms. In this study, DGT devices were applied to (1) monitor the DGT-labile metal species in the lower Athabasca River and the Mackenzie River watershed and (2) assess the DGT-labile metal concentrations on temporal and spatial scales. In the lower Athabasca River, comparison between the DGT results and the Windermere Humic Acid Model (WHAM) calculation indicated good agreements for all metals when the precipitated iron(III) hydroxide was assumed as an active binding surface. No significant variations in labile species were found over 2003-2012 (RAMP database) despite the development of oil sands. In the Mackenzie River, no significant difference in DGT-labile metal concentrations and DOC concentrations was found in yearly basis 2012-2014. Only DOC was lower in August (6.98 and 3.85 ppm, respectively; p< 0.05) due to dilution from heavy rain events. Spatially, DGT-labile Cu and Ni in the downstream Mackenzie River were higher than upstream (1.79 and 0.58 ppb for Cu, 1.68 and 0.77 ppb for Ni, 4.06 and 6.91 ppm for DOC; p < 0.05). Overall the in situ measurements of metals constitute a benchmark for future studies in water quality and be helpful in environmental management in Alberta and the Northwest Territories in Canada.

Author Keywords: Athabasca River, DGT, Mackenzie River, Speciation, Trace Metal, WHAM

2016

Long-Term Population Dynamics of an Unexploited Lacustrine Brook Trout (Salvelinus fontinalis) Population

Type:
Names:
Creator (cre): Brown, Erin Nicole Danielle Pallette, Thesis advisor (ths): Ridgway, Mark S, Thesis advisor (ths): Wilson, Chris C, Degree granting institution (dgg): Trent University
Abstract:

Long-term studies of demographic processes such as survival and abundance conducted in unexploited systems provide unique insight into the natural population ecology of fish, but are rarely available. I used historical tagging records of a sanctuary population of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario to investigate long-term population dynamics in an unexploited population. Adult brook trout in Mykiss Lake (23.5ha) were surveyed and tagged biannually (May and October) between 1990 and 2004. Open-population capture-mark-recapture models were used to test the importance of time, size, sex and season on estimates of apparent survival and abundance. Seasonal population growth and recruitment were estimated and compared with large-scale climate indices. Time-dependent survival and abundance estimates fluctuated, with distinct periods of increase. Population growth and recruitment were positively correlated with summer NAO and ENSO values, whereas survival was negatively correlated. Seasonally, larger individuals experienced higher apparent survival during winter and decreased survival during summer. These findings provide valuable insights into the natural demography of unexploited brook trout populations, and should help inform sustainable management of inland fisheries.

Author Keywords: capture-mark-recapture, long-term, population dynamics, Salvelinus fontinalis, seasonal variation, survival

2016

Phylogeography and Genetic Structuring of Moose (Alces alces) Populations in Ontario, Canada

Type:
Names:
Creator (cre): Price, Glynis Nicola Rose, Thesis advisor (ths): Saville, Barry, Degree committee member (dgc): Murray, Dennis, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Moose are an iconic species, known for their large size and impressive antlers. Eight subspecies are classified in circumpolar regions of the planet - four in North America. Two subspecies are similar in shape and size, the north-western moose (Alces alces andersoni) and the eastern moose (Alces alces americana). It was previously believed that these two subspecies meet in northern Ontario. Earlier genetic population studies used a small number of samples from Ontario, primarily in broad studies covering all of North America.

A comprehensive genetic study of moose populations in Ontario has not previously been conducted. We examined the genetic diversity and population structure at 10 polymorphic loci using 776 samples from Ontario, as well as outgroups from representative populations – Manitoba/Cape Breton, representing A. a. andersoni, and New Brunswick/Nova Scotia, representing A. a. americana. Results indicated three genetic populations in the province, in north-western Ontario, north-eastern Ontario and south-central Ontario. RST values, compared against both FST and Jost's D values for phylogenetic analyses, indicated no phylogenetic pattern which suggests no subspeciation present in the province.

Population movement patterns in Ontario were studied. Gene flow was estimated using genetic and spatial data. Isolation by distance was only seen within the first distance class of 100 kilometres and then not seen again at further distances, indicating that moose display philopatry. There were very few migrants travelling across the province, with a greater number moving gradually north and west, towards better habitat and food sources.

A forensic database in the form of an allele frequency table was created. Three loci showed very low levels of heterozygosity across all three populations. Probability of identity was calculated for the three populations and quantified. Samples with known geographic origins were run against the database to test for sensitivity, with identification of origin occurring at an accuracy level between 87 and 100%.

Within Ontario, there are not two different subspecies, as previously believed, but two different populations of the same subspecies meeting in northern Ontario. The genetic data does not support previous research performed in Ontario. The sample sizes in our research also provide a more comprehensive view of the entire province not seen in any previous studies. The comprehensive research enabled the building of a reliable forensic database that can be used for both management and forensic purposes for the entire province.

Author Keywords: Alces alces, Genetic Diversity, Moose, Ontario, Phylogeography, Subspecies

2016

Assessing the Potential for Contamination of Lakes from Upwelling of Arsenic-Laden Groundwater Through Sediments

Type:
Names:
Creator (cre): Lock, Alan S., Thesis advisor (ths): Wallschläger, Dirk, Thesis advisor (ths): Belzile, Nelson, Degree committee member (dgc): Belzile, Nelson, Degree committee member (dgc): Gueguen, Celine, Degree granting institution (dgg): Trent University
Abstract:

A bedrock fracture hosting arsenic (As) contaminated groundwater was suspected to be transported to Ramsey Lake, a drinking water resource for more than 50,000 residents of Sudbury, Ontario. A high resolution, spatial, water quality mapping technique using an underwater towed vehicle (UTV) was used to identify sources of upwelling groundwater into lake water and localize the upwelling As contaminated groundwater vent site. The top 7 cm of lake sediments (in-situ) at this vent site were observed to adsorb 93 % of the dissolved As, thus inhibiting lake water quality degradation from this contaminant source. Sediment samples from this location were used in laboratory experiments to assess the potential for this system to become a source of As contamination to Ramsey Lake water quality and elucidate As(III) fractionation, transformation and redistribution rates and processes during aging. Arsenic speciation is important because As(III) has been shown to be more toxic than As(V). To accomplish this a sequential extraction procedure (SEP) that maintains As(III) and As(V) speciation in (sub)oxic sediments and soils was validated for the operationally defined fractions: easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and the residual fraction for total As because the characteristics of the reagents required to extract the final fraction do not maintain As species.

Batch reaction experiments using sediment spiked with As(III) or As(V) and aged for up to 32 d were sequentially extracted and analysed for As(III) and As(V). Consecutive reaction models illustrate As(III) is first adsorbed to the sediment then oxidized to As(V). Fractionation analyses show As(III) most rapidly adsorbs to the easily exchangeable fraction where it is oxidized and redistributes to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As(III) adsorbed to the amorphous and crystalline Fe oxide bound fractions is less efficient and possibly inhibited. Select samples amended with goethite provide evidence supporting Mn(II) oxidation is catalyzed by the goethite surface, thus increasing As(III) oxidation by Mn(III/IV) complexed with the strongly sorbed fraction. Although As immobilization through groundwater sediment interactions may be inhibited by increased ion activity, particularly phosphate or lake eutrophication, this threat in Ramsey Lake is likely low.

Author Keywords: arsenic, fractionation, modelling, redistribution, speciation, water quality mapping

2017

Stopover Movement Patterns by Blackpoll and Canada Warblers Across Southeastern Canada During Fall Migration: An Automated Radio-Telemetry Study

Type:
Names:
Creator (cre): Parada Isada, Alain, Thesis advisor (ths): Nol, Erica, Thesis advisor (ths): Taylor, Phil D, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Stopover ecology is a topic that surges in relevancy as choices made by migrants during stationary periods (stopover sites) may not only have important individuals' fitness consequences but also can affect population dynamics. I used MOTUS automated telemetry array to study fall stopover duration of Blackpoll Warbler (BLPW) and departure decisions of BLPW and Canada Warbler (CAWA) in relation to various predictors. I affixed radio-transmitters on 55 BLPWs and 32 CAWAs at two banding stations in Ontario in September-October 2014-2015. Radio-tagged individuals were tracked through the MOTUS network across southeastern Canada. I developed models relating age class, fat score, Julian date and stopover movement types to Blackpolls' stopover duration. I also examined whether there were species-related differences of wind selectivity when resuming migration. No explanatory variable significantly influenced BLPW's stopover duration. Both species tended to depart under increased tailwind assistance, but with no difference in the effect of wind conditions between the two species. This study provides further evidence supporting the relevance of local wind conditions as a key factor affecting the departure likelihood, especially when migrating birds face an ecological barrier.

Author Keywords: Cardellina canadensis, departure decisions, minimum stopover length, MOTUS, overland fall migration, Setophaga striata

2017