Ecology
EVALUATION OF HAYFIELD MANAGEMENT STRATEGIES AND BOBOLINK TERRITORIAL HABITAT IN SOUTHERN ONTARIO
I implemented three hayfield management regimens in southern Ontario (a typical schedule at the farmer`s discretion, a delayed first harvest after July 14, and an early first harvest before June 1 with 65 days before second harvest), and evaluated the costs/benefits to farmers regarding hay quality and feasibility, and to Bobolinks (Dolichonyx oryzivorus) regarding reproductive activity and phenology. Typical management resulted in little to no Bobolink reproductive success, and early harvested sites were not (re)colonized. On delayed harvest sites Bobolinks experienced high reproductive success, but hay quality fell below ideal protein levels for most cattle before harvest. I also examined the habitat features Bobolinks use as the basis for establishing territories and associations between Bobolink territory size and habitat quality. I compared vegetation structure, patch size, and prey abundance between small and large territories. Small territories typically occurred on smaller fields with more preferred vegetation characteristics and greater prey abundance.
Author Keywords: agro-ecosystem, Bobolink, Dolichonyx oryzivorus, grassland birds, hayfield management
Home range use, habitat selection, and stress physiology of eastern whip-poor-wills (Antrostomus vociferus) at the northern edge of their range
The distribution of animals is rarely random and is affected by various environmental factors. We examined space-use patterns, habitat selection and stress responses of whip-poor-wills to mining exploration activity.To the best of my knowledge, fine scale patterns such as the habitat composition within known home ranges or territories of eastern whip-poor-wills have not been investigated. Using a population at the northern edge of the distribution in an area surrounding a mining exploration site, we tested whether variations in habitat and anthropogenic disturbances influence the stress physiology of individuals. We found no effect of increased mining activity on the stress physiology of birds but found a significant scale-dependent effect of habitat on their baseline and stress-induced corticosterone levels, and we suggest that these are the result of variations in habitat quality. The importance of other factors associated with those habitat differences (e.g., insect availability, predator abundance, and microhabitat features) warrants further research.
Author Keywords: anthropogenic disturbances, Antrostomus vociferus, corticosterone, eastern whip-poor-will, habitat selection, radio-telemetry
Productive Capacity of Semi-Alluvial Streams in Ontario: The Importance of Alluvial Material for Fish, Benthic Invertebrates, Periphyton and Organic Matter
Changes in climate and land-use practices are leading to higher peak flows and increased transport capacity of channel substrate. Semi-alluvial streams underlain by bedrock or clay were examined to understand the potential impacts of alluvium loss on the biological community and overall productive capacity of semi-alluvial rivers. More specifically, this research investigates the productivity of gravels, bedrock, and consolidated clay, through the biomass and density of periphyton, coarse particulate organic matter, benthic invertebrates, and fish. The ecological approach undertaken demonstrates the relationships among each trophic level and linkages to productive capacity between different substrate types. Significant results were detected at the stream type level and substrate level. Bedrock-based streams were overall more productive in terms of CPOM, biomass and density of benthos in comparison to clay-based streams. Stream reaches with small to large areas of exposed bedrock or clay at the site level did not differ to areas with 100% gravel coverage in the comparison of any variable, including stream fishes. At the substrate level, gravels demonstrated the highest productive capacity in comparison to bedrock and clay substrates. CPOM biomass in gravels compared to bedrock and clay at a ratio of 30:14:1, respectively. Biomass of benthic invertebrates also demonstrated a higher productivity on gravels with a ratio of 59:19:1 in comparison to bedrock and clay, respectively. Positive relationships between CPOM and benthic invertebrate biomass were detected in both stream types.
Relationships were also detected between fish biomass and benthic invertebrate biomass. Examination of benthic fishes also demonstrated positive relationships with benthic invertebrate biomass and density. Clay substrate on all accounts supported little biota. Results indicate alluvium loss in clay bed streams could reduce productive capacity. Understanding and integration of the potential impacts of alluvium loss would aid management and No Net Loss compensation plans to protect fisheries resources in semi-alluvial streams.
The Influence of Habitat on Woodland Caribou Site Fidelity
Site fidelity is the behaviour of individuals to return to the same location; for female woodland caribou it may reflect reproductive success and depend on habitat quality. I investigated the influence of landscape and disturbance conditions on fidelity among three populations in Manitoba and Ontario, Canada. Habitat classifications were based on Forest Resource Inventory (FRI) and Landsat TM landcover maps. A total of 261 sites were ground-truthed to determine mapping accuracy. An amalgamated map incorporating FRI and Landsat TM data was estimated from field measurements to have an overall accuracy of 69.0%. Site fidelity was expressed as the distance between consecutive-year locations of individuals and was investigated during five week-long periods representing calving, early and late post-calving, winter, and breeding. Site fidelity was strongest during the post-calving seasons and weakest during the winter. Habitat had little influence on site fidelity in all seasons, excepting winter, even under highly disturbed conditions, suggesting maintenance of fidelity may be a maladaptive trait. Individual variation proved a strong predictor and cursory mapping indicated that caribou may return to sites visited two or more years earlier. Conservation management and policy should recognize that site fidelity may represent an ecological trap.
Author Keywords: calving, disturbance, habitat, movement, Rangifer tarandus caribou, site fidelity
ECTOPARASITIC INFLUENCES OF DIPTERA ON THE ACTIVITY AND BEHAVIOUR OF WOODLAND CARIBOU (RANGIFER TARANDUS) IN A MANAGED BOREAL FOREST LANDSCAPE IN NORTHERN ONTARIO
Caribou experience direct and indirect negative effects of harassment from biting flies, influencing behavior and activity on several spatial and temporal scales. I used systematic insect collection surveys during the summers of 2011 and 2012 to examine the spatial and temporal distributions of black flies (Simuliidae), mosquitoes (Culicidae), and deer flies and horse flies (Tabanidae) in a managed boreal forest in northern Ontario. Mosquitoes had a positive association with densely treed habitats, whereas black flies more often occurred in open areas, and tabanids had a strong presence in all habitat types. Habitats in proximity to large bodies of water had fewer biting flies than inland areas. Young stands supported higher abundances of tabanids despite vegetation community type. Next, I tested for seasonal effects of biting fly abundance on caribou activity by modelling the seasonal trend in abundance for each fly family for each year and compared this to an index of daily activity for 20 radio-collared female caribou in 2011 and 10 females in 2012. I modeled this index of caribou activity for each animal in each year and extracted the set of partial correlation coefficients from multiple regressions to test for effects of biting fly abundances on caribou activity. Caribou reduced their daily activity when tabanids were more numerous, and increased activity when mosquitoes were numerous. This divergent response may reflect a difference in the efficacy of moving to reduce harassment, owing to the stronger flight capabilities of tabanids.
Author Keywords: Activity, Anthropogenic Disturbance, Behaviour, Insect harassment, Temporal distribution, Woodland Caribou
Evaluating the Effects of Habitat Loss and Fragmentation on Canada Lynx
Current major issues in conservation biology include habitat loss, fragmentation and population over-exploitation. Animals can respond to landscape change through behavioural flexibility, allowing individuals to persist in disturbed landscapes. Individual behaviour has only recently been explicitly included in population models. Carnivores may be sensitive to changing landscapes due to their wide-ranging behaviour, low densities and reproductive rates. Canada lynx (Lynx canadensis) is a primary predator of snowshoe hares (Lepus americanus). Both species range throughout the boreal forests of North America, however lynx are declining in the southern range periphery. In this dissertation, I developed new insights into the effects of habitat loss and fragmentation on lynx. In Chapter 2, I created a habitat suitability model for lynx in Ontario and examined occurrence patterns across 2 regions to determine if habitat selection is flexible when different amounts of habitat are available. Although lynx avoided areas with <30% suitable habitat where suitable land cover is abundant, I found that they have flexible habitat selection patterns where suitable land cover is rare and occurred in low habitat areas. In Chapter 3, I investigated the effects of dispersal plasticity on occupancy patterns using a spatially explicit individual-based model. I showed that flexible dispersers, capable of crossing inhospitable matrix, had higher densities and a lower risk of patch extinction. In contrast, inflexible dispersers (unable to cross inhospitable matrix), were most limited by landscape connectivity, resulting in a high extinction risk in isolated patches. I developed three predictions to be explored with empirical data; (1) dispersal plasticity affects estimates of functional connectivity; (2) variation in dispersal behaviour increases the resilience of patchy populations; and (3) dispersal behaviour promotes non-random distribution of phenotypes. Finally, in Chapter 4, I examined the consequences of anthropogenic harvest on naturally cycling populations. I found that harvest mortality can exacerbate the effects of habitat fragmentation, especially when lynx densities are low. Dynamic harvest regimes maintained lynx densities and cycle dynamics while reducing the risk of population extinction. These results suggest that lynx display some flexibility to changing landscapes and that the metapopulation structure is more resilient to increasing habitat loss and fragmentation than previously understood. Future studies should focus on determining a threshold of connectivity necessary for population persistence and examining the effects of habitat loss on the fecundity of lynx.
Author Keywords: Fluctuating Populations, Habitat Fragmentation, Landscape Ecology, Occupancy Dynamics, Population Ecology, Spatially Explicit Population Models
Evaluating the effects of landscape structure on genetic differentiation and diversity
The structure and composition of the landscape can facilitate or impede gene flow, which can have important consequences because genetically isolated groups of individuals may be prone to inbreeding depression and possible extinction. My dissertation examines how landscape structure influences spatial patterns of genetic differentiation and diversity of American marten (
Author Keywords: Circuitscape, genetic network, landscape genetics, Lynx canadensis, Martes americana, range shift
ASSESSING THE IMPACT OF ATMOSPHERIC DEPOSITION AND HARVEST INTENSITY ON SOIL ACIDITY AND NUTRIENT POOLS IN PLANTATION FORESTS
The objective of this thesis was to assess the influence of anthropogenic sulphur (S) and nitrogen (N) deposition, and harvesting on soil acidity and calcium (Ca
Author Keywords: acidic deposition, base cations, input-output budgets, Ireland, nitrogen, whole-tree harvesting
Spatial dynamics of pollination in dioecious Shepherdia canadensis in Yukon, Canada
Sexual reproduction in flowering plants depends on investment in reproduction, the mode of pollen transfer, the availabilities of nutrient resources and potential mates, and the spatial scales over which these processes take place. In this thesis, I studied the general reproductive biology of Shepherdia canadensis (L.) Nutt. (Elaeagnaceae) and the suite of pollinators that visit the plants in Ivvavik National Park, Yukon, Canada. Across ten sites, I found that S. canadensis females were larger than males, but males produced more flowers than females at most sites. Males typically occurred at higher frequencies than females with the average male to female sex ratio being 1.19 ± 0.08 (mean ± SE, n = 10 sites). Both shrub size and flower production were significantly influenced by interactions between soil nitrogen and sex. Insect visitors to S. canadensis flowers were primarily ants and flower flies (Syrphidae), but exclusion experiments indicated that visitation by flying insects yielded greater fruit production than visitation by crawling insects. I found that fruit set was limited by the density of males within populations, but only over small distances (4-6 m). This is the first study to demonstrate that female reproductive success of a generalist-pollinated dioecious plant is limited by the density of males over small spatial scales.
Author Keywords: dioecy, pollinators, sex ratio, sexual dimorphism, Shepherdia canadensis
Longitudinal trends of benthic invertebrates in regulated rivers: a test of the Serial Discontinuity Concept
The Serial Discontinuity Concept describes the downstream recovery of key biophysical variables below an impoundment. With the proliferation of hydropower dams to meet increasing societal demands, further refinement and understanding of the Serial Discontinuity Concept is needed to accurately predict downstream impacts and ensure the proper management of rivers. In this study, I examine SDC predictions on physical, chemical and biological recovery in regulated rivers providing evidence from 1) a comprehensive literature review and 2) a formal test using two regulated rivers in Northern Ontario. I specifically address how these changes are reflected in benthic invertebrate abundance, diversity, and community composition. The literature review and case studies support the predicted recovery of temperature, periphyton, substrate, and drift. In addition, the study suggests that two recovery gradients exist in regulated rivers: 1) a longer, thermal gradient taking up to hundreds of kilometres downstream; and 2) a shorter, resource subsidy gradient recovering within 1-4 km downstream of an impoundment. Total benthic invertebrate abundance varies considerably and depends on the degree of flow alteration and resource subsidies from the upstream reservoir. In contrast, benthic diversity is reduced below dams irrespective of dam location and operation with little recovery observed downstream. Contrary to SDC predictions, the longitudinal gradient in regulated rivers is not a compaction of functional changes seen over several stream orders in natural rivers but a response to dam design and reservoir conditions. Stoneflies and dragonflies are particularly sensitive to regulation while filter feeding invertebrates are enhanced. Ward and Stanford's (1983) Serial Discontinuity Concept is still a useful framework for testing hypotheses. Future studies should further expand the SDC through empirical estimation within the context of the landscape to gain a better scientific understanding of regulated river ecology.
Author Keywords: benthic invertebrates, dams, longitudinal, recovery, River Continuum Concept, Serial Discontinuity Concept