Ecology
Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behaviour at a Vancouver Island Migratory Stopover Site
Pacific Rim National Park Reserve's 16 km of coastal beaches attract many thousands of people and shorebirds every year. To identify locations where shorebirds concentrate and determine the impact of human activity and habitat characteristics on shorebirds, I conducted shorebird and visitor surveys at 20 beach sectors during fall migration in 2011 to 2013 and spring migration in 2012 and 2013. The probability of shorebird presence decreased with increasing number of people at a beach sector. The time that shorebirds spent at a sector increased with increasing sector width. Close proximity to people increased the proportion of time shorebirds spent moving while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. My findings suggest that placing restrictions on beach access and fast moving activities (e.g., running) may be necessary to reduce shorebird disturbance at Pacific Rim and similar stopover areas.
Author Keywords: habitat use, human disturbance, predation risk, prey availability, shorebird, stopover
Reintroducing species in the 21st century: incorporating climate change into translocation and de-extinction programs
Climate change has had numerous impacts on species' distributions by shifting suitable habitat to higher latitudes and elevations. These shifts pose new challenges to biodiversity management, in particular translocations, where suitable habitat is considered crucial for the reintroduced population. De-extinction is a new conservation tool, similar to reintroduction, except that the proposed candidates are extinct. However, this novel tool will be faced with similar problems from anthropogenic change, as are typical translocation efforts. Using ecological niche modelling, I measured suitability changes at translocation sites for several Holarctic mammal species under various climate change scenarios, and compared changes between release sites located in the southern, core, and northern regions of the species' historic range. I demonstrate that past translocations located in the southern regions of species' ranges will have a substantial decline in environmental suitability, whereas core and northern sites exhibited the reverse trend. In addition, lower percentages (< 50% in certain scenarios) of southern sites fall above the minimal suitability threshold for current and long-term species occurrence. Furthermore, I demonstrate that three popular de-extinction candidate species have experienced changes in habitat suitability in their historic range, owing to climate change and increased land conversion. Additionally, substantial increase in potentially suitable space is projected beyond the range-limits for all three species, which could raise concerns for native wildlife if de-extinct species are successfully established. In general, this thesis provides insight for how the selection of translocation sites can be more adaptable to continued climate change, and marks perhaps the first rigorous attempt to assess the potential for species de-extinction given contemporary and predicted changes in land use and climate.
Author Keywords: climate change, de-extinction, ecological niche models, MaxEnt, reintroduction, translocation
Nutritional stoichiometry and growth of filamentous green algae (Family Zygnemataceae) in response to variable nutrient supply
In this study, I investigate the effects of nitrogen (N) and phosphorus (P) on the nutritional stoichiometry and growth of filamentous green algae of the family Zygnemataceae in situ and ex situ. I found a mean of Carbon (C):N:P ratio of 1308:66:1 for populations growing in the Kawartha Lakes of southern Ontario during the summer of 2012. FGA stoichiometry was variable, with much of the variation in algal P related to sediment P (p < 0.005, R2 = 0.58). Despite large variability in their cellular nutrient stoichiometry, laboratory analysis revealed that Mougeotia growth rates remained relatively consistent around 0.28 day-1. In addition, Mougeotia was found to be weakly homeostatic with respect to TDN:TDP supply (1/HNP = 0.32). These results suggest that FGA stoichiometry and growth rates are affected by sediment and water N and P. However, they will likely continue to grow slowly throughout the summer despite variable nutrient supply.
Author Keywords: Chlorophyll concentration, Filamentous algae, Growth rate, Homeostatic regulation, Nutritional stoichiometry
Understanding Historical and Contemporary Gene Flow Patterns of Ontario Black Bears: Towards Refining Management Strategies
Consequences of habitat loss and fragmentation include smaller effective population sizes and decreased genetic diversity, factors that can undermine the long-term viability of large carnivores that were historically continuously distributed. I evaluated the historical and contemporary genetic structure and diversity of American black bears (
Author Keywords: American black bear, carnivore, conservation genetics, Ontario, phylogeography, population genetics
Demography of a Breeding Population of Whimbrel (Numenius phaeopus) Near Churchill, Manitoba, Canada
I used a GIS raster layer of an area in the Churchill, Manitoba region to investigate the effect of breeding habitat on demography and density of Whimbrel from 2010 through 2013. Program MARK was used to quantify adult and daily nest survival. Apparent annual survival of 0.73 ± 0.06 SE (95% CI = 0.60-0.83) did not significantly differ between sexes or habitats and was lower than expected based on longevity records and estimates for other large-bodied shorebirds. Nest success, corrected for exposure days, was highly variable, ranging from a low of 3% (95% CI = 0-12%) in 2011 to a high of 71% (95% CI = 54-83%) in 2013. The highest rate of nest survival occurred in the spring with the warmest mean temperature. I developed a generalized linear model (GLM) with a negative-binomial distribution from random plots that were surveyed for abundance to extrapolate a local breeding population size of 410 ± 230 SE and density of 3.2 birds per square km ± 1.8 SE. The result of my study suggests that other aspects of habitat not captured by the land cover categories may be more important to population dynamics.
Author Keywords: abundance, apparent survival, curlew, land cover map, nest-site fidelity, nest success
EXPLORING THE EFFECTS OF WATERPOWER OPERATIONS ON RIVERINE ECOSYSTEMS ACROSS NORTHERN ONTARIO
In this study, we attempt to enhance current knowledge of ecological responses to riverine alterations from waterpower by using a bottom-up food up approach. A series of extensive and intensive study components were performed across northern Ontario, Canada, where biological (nutrients, dissolved organic matter (DOM) and periphyton) and physical (water level and thermal regimes) ecological indicators were examined in regards to alterations from dams and waterpower facilities. Overall, we found that the water levels and thermal regimes deviated from their reference condition at sites below the dams, whereas the biological indicators were more resilient to river alterations. Our results suggest that the characteristics of the watershed were influential in controlling the variability of nutrients and DOM resources in rivers within the boreal watersheds of northern Ontario, as well as the for the downstream recovery patterns of the physical indicators. The recovery of the periphyton communities downstream of the dams were also predicted to be cumulatively related to the physical alterations, nutrient availability and the possible displacement of invertebrate communities. Therefore, our bottom-up food web approach was not effective for better understanding how ecological responses from waterpower cascade through aquatic food webs, and instead multiple indicators should be used for examining the ecological responses in these particular river systems.
Author Keywords: dissolved organic matter, ecological indicators, river alteration, waterpower facilities
Moving North: Habitat Selection and Survival of the Wild Turkey at its Northern Range Edge
Since their successful reintroduction, the eastern wild turkey
Author Keywords: Eastern Wild Turkey, Euclidean distance analysis, Habitat selection, Meleagris gallopavo silvestris, Northern range edge, Survival
The Dynamics and Mechanisms of Community Assembly in a Mined Carolinian Peatland
Theoretical work on community recovery, development, stability, and resistance to species invasions has outpaced experimental field research. There is also a need for better integration between ecological theory and the practice of ecological restoration. This thesis investigates the dynamics of community assembly following peat mining and subsequent restoration efforts at Canada's most southerly raised bog. It examines mechanisms underlying plant community changes and tests predictions arising from the Dynamic Environmental Filter Model (DEFM) and the Fluctuating Resource Hypothesis (FRH). Abiotic, biotic and dispersal filters were modified to test a conceptual model of assembly for Wainfleet Bog. Hydrology was manipulated at the plot scale across multiple nutrient gradients, and at the whole bog scale using peat dams. Trends in time series of hydrological variables were related to restoration actions and uncontrolled variables including precipitation, evapotranspiration and arrival of beaver. Impacts of a changing hydrology on the developing plant community were compared with those from cutting the invasive Betula pendula. Transplanting experiments were used to examine species interactions within primary and secondary successional communities. Seedlings of B. pendula and the native Betula papyrifera were planted together across a peat volumetric water content (VWC) gradient. Impacts of beaver dams were greater than those of peat dams and their relative importance was greatest during periods of drought. Cutting of B.pendula had little effect on the secondary successional plant community developing parallel to blocked drains. Phosphorus was the main limiting nutrient with optimum levels varying substantially between species. Primary colonisers formed a highly stable, novel plant community. Stability was due to direct and indirect facilitative interactions between all species. Reduction in frost heaving was the major mechanism behind this facilitation. Interactions within the secondary successional community were mostly competitive, driven by light and space availability. However, restricted dispersal rather than competition limited further species recruitment. Predictions based on the DEFM were partially correct. A splitting of this model's biotic filter into competition and facilitation components is proposed. There was little support for the FRH based on nutrient levels and VWC. B. pendula had higher germination and growth rates, tolerance to a wider range of peat VWCs and a greater resistance to deer browsing than native birch. Peat mining, combined with restoration actions and the arrival of beaver has moved much of the bog back to an earlier successional stage circa 350+ years BP. Evidence points to B. pendula being a "back-seat driver" in the ecosystem recovery process. Indirect facilitation of a native by an exotic congener, mediated through herbivory, has not been described previously. Shifts in relative contributions of facilitation, competition and dispersal limitations to community assembly may be useful process-oriented measures for gauging progress in restoration.
Author Keywords: Betula pendula, community assembly, competition, facilitation, peatland, restoration
A mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.
Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
Constraints on phenotypic plasticity in response to predation risk: Carryover effects, maternal investment, and the starvation-predation risk trade-off
Inducible defenses are plastic responses by an organism to the perception of predation risk. This dissertation focuses on three experiments designed to test the hypothesis that plastic ability is limited by energetic constraints. Chapter 1 provides a general introduction to phenotypic plasticity research and the theoretical costs and limitations affecting the expression of plastic traits. In Chapter 2, I tested the hypothesis that costs of early plasticity may be manifested by a reduced response to risk in later life stages. I found that amphibian embryos are able to detect and respond to larval predators, but that the energetic cost of those plastic responses are not equivalent among behavioural, growth, and morphological traits, and their expression differs between closely-related species. Chapter 3 explicitly examines the relationship between food resource availability and plasticity in response to perceived predation risk during larval development. Food-restricted tadpoles showed limited responses to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. Chapter 4 examines the influence of maternal investment into propagule size on the magnitude of the plastic responses to predation risk in resulting offspring. I found that females in better body condition laid larger eggs and that these eggs, in turn, hatched into larvae that showed greater morphological plasticity in response to predation risk. Maternal investment can therefore affect the ability of offspring to mount morphological defenses to predation risk. Last, Chapter 5 provides a synthesis of my research findings, identifying specific factors constraining the plastic responses of prey to perceived predation risk. Overall, I found constraints on plastic responses imposed by the current environment experienced by the organism (resource availability), the prior experience of the organism (predator cues in the embryonic environment), and even the condition of the previous generation (maternal body condition and reproductive investment). Together, these findings both provide new knowledge and create novel research questions regarding constraints limiting phenotypic variation in natural populations.
Author Keywords: behaviour, inducible defense, Lithobates pipiens, morphometrics, phenotypic plasticity, predation risk