Sager, Eric
Temporal variation of dissolved organic matter and diffusive gradient in thin films-labile mercury in the Quesnel river, BC, and the Goose Creek tributary of Churchill river, MB
This study examined dissolved organic matter (DOM) and labile Mercury (from diffusive gradient in thin films (DGT)) in the Quesnel river, British and the Goose creek tributary of the Churchill river, Manitoba. DOM properties were measured with optical measurements of absorption coefficient (a254), spectral slopes (S275-295, SR) and fluorescence indices (HIX, BIX, FI). The DOC proxy measurements (a254) were almost 10 times higher at the Churchill site (Mean a254 116.77 cm-1) compared with the Quesnel river site (Mean a254 12.06 cm-1) during the study periods. While DGT labile Hg concentrations at the Quesnel site (2.17 to 98.97ppt) were almost 10 times more than the levels reported at the Churchill site (0.03 to 9.06 ppt). Fluorescence indices and the rise of labile Hg concentrations in spring indicated mostly terrestrial sources of DOM at both the sites. Spectral slopes and fluorescence indices substantiated that Churchill site had high molecular weight, complex and more humic DOM compared with Quesnel. DOM at both the sites was prone to temporal variation and affected by environmental conditions. Correlation between DGT labile-Hg and DOM parameters suggested that DGT collected Hg-organic complexes along with inorganic labile-Hg complexes.
Author Keywords: Churchill, Diffusive gradient in thin films, Dissolved organic matter, Labile Hg, Mercury, Quesnel
The Influence of Nitrogen Deposition on Community Composition in Pinus banksiana Forests Across Northwestern Canada
Anthropogenic atmospheric emissions and subsequent deposition of nitrogen (N) can affect N-sensitive habitats and lead to shifts in plant species community composition. This study assessed the effects of N deposition on plant community composition for Jack pine forests across northwestern Canada and across a smaller subset of sites surrounding the Athabasca Oil Sands Region (AOSR) using 'gradient forest' analysis. Predictor influence on community composition varied depending on the scale of the study and relatively
distinct thresholds were identified for different plant groups. In the larger scale study, a total deposited nitrogen (TDN) threshold of 1.5 – 3 kg N ha-1yr-1 was well suited to protect predominantly lichen species, consistent with lichen-based critical loads from other studies. Across the smaller scale study, a TDN threshold of 5.6 kg N ha-1yr-1 was primarily associated with vascular species changepoints but did include some important N-indicator lichen and bryophyte species.
Author Keywords: critical loads, gradientForest, Jack pine, Nitrogen deposition, species composition
Prioritizing Restoration Potential within Protected Areas in Haliburton County, Ontario
Ecological restoration helps managers of protected areas respond to challenges presented by factors that threaten ecological integrity and respond to residual effects of previous land use. Many protected areas require restoration on sections of the property, due to previous land use. The objective of this thesis is to present criteria that assist ecological restoration professionals in assessing the potential of restoration projects within a protected area, based on the restoration wheels from the International Principles and Standards for the Practice of Ecological Restoration. The criteria were discovered from a review of the literature and reinforced from interviews with experienced restoration practitioners and a focus group session with key members of the Haliburton Highlands Land Trust (HHLT). Based on the combination of biophysical and socioeconomic values in the restoration wheels, they are presented in the form of a five-star assessment system to create long-term restoration goals for properties of the HHLT and protected areas in general. These long-term restoration goals can be utilized in conjunction with the wheels and five-star assessment tools to prioritize restoration projects
Author Keywords: Determining Project Potential, Ecological Restoration, Evaluating Success, Haliburton, Land trusts, Restoration Wheels
The influence of tree species litterfall on soil chemistry and implications for modelling soil recovery from acidification
Decades of acidic deposition have depleted base cation pools in soil over large parts of eastern north America, including the Muskoka-Haliburton region of central Ontario. This region has also experienced a shift in forest species composition over the past 200 years, favouring sugar maple (Acer saccharum Marsh.) at the expense of species such as white pine (Pinus strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carr.). This shift in species composition may have changed soil chemistry over time due to differences in nutrient and metal inputs in litterfall. An analysis of litterfall and soil chemistry was conducted for five tree species commonly found across central Ontario. Stands were established in the Haliburton Forest & Wild Life Reserve and were dominated by one of balsam fir (Abies balsamea (L.) Mill.), eastern hemlock, white pine, sugar maple, or yellow birch (Betula alleghaniensis Britt.). Analysis of mineral soil oxides suggested that these stands were established on similar parent material. Deciduous dominated stands (maple and birch) had greater litterfall mass compared with conifer stands (fir, hemlock, and pine), generally leading to greater macronutrient inputs to the soil. Elemental cycling through the organic horizons was more rapid in deciduous stands, with base cations having the shortest residence times. This suggests that a change from greater conifer dominance to mixed hardwood forests may lead to more rapid elemental cycling and alter the distribution of elements in soil. Forests in the region are typically mixed and the resulting differences in soil chemistry may influence model predictions of soil recovery from acidification. Laboratory leaching tests indicated that both stand type and the acidity of simulated rainwater inputs influenced soil solution chemistry, with deciduous stands generally having a greater buffering capacity than sites dominated by coniferous species. Changes in soil chemistry were examined for each stand type using the Very Simple Dynamic (VSD) biogeochemical model. Simulations showed that soil base saturation began to increase following lows reached around the year 2000, and similar patterns were observed for all stands. When sulphur (S) and nitrogen (N) deposition were held constant at present rates, soil base saturation recovery (toward pre-1900 levels) was marginal by 2100. With additional deposition reductions, further increases in base saturation were minor at all sites. In conjunction with additional deposition reductions, the elimination of future forest harvesting allowed for the greatest potential for recovery in all stands. Overall, these results suggest that changes in forest cover may influence soil chemistry over time, most notably in the organic soil horizons. However, forecasted recovery from acidification is expected to follow similar patterns among stands, since differences in soil chemistry were less significant in the mineral soil horizons which compose a greater proportion of the soil profile.
Author Keywords: base cation decline, forest harvesting, litterfall, mineral weathering, soil acidification, VSD model
Ecosystem Response to Above Canopy Nitrogen Addition in a Jack Pine (Pinus banksiana) Forest in the Athabasca Bituminous Sands Region of Northeastern Alberta, Canada
In this study we seek to better understand the potential effects of short-term (5-year) N fertilization on jack pine forest biogeochemistry, vascular plant community composition and to project a temporal endpoint of nitrogen leaching below the major rooting zone. Aqueous ammonium nitrate (NH4NO3) was applied above the forest canopy across five treatment plots (20 x 80 m) four times annually. The experimental deposition gradient followed those known for localized areas around the major open pit operations at 0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1 over a five-year period (2011 – 2015). Nitrate recovery in throughfall was significantly higher than NH4+ (p < 0.05), indicating canopy NH4+ immobilization. There was a strong treatment effect (p < 0.05) of N on the epiphytic lichen thalli concentrations of Hypogymnia physodes and Evernia mesomorpha after five years. The canopy appeared to approach saturation at the highest deposition load (25 kg N ha-1 yr-1) during the fifth year of N additions as most N added above the canopy was accounted for in throughfall and stemflow. The non-vascular (lichen and moss) vegetation pool above the forest floor was the largest receptor of N as cryptogam foliar and thalli N concentrations showed a significant treatment effect (p < 0.05). Nitrogen in decomposing litter (25 kg N ha-1 yr-1) remained immobilized after five years, while treatments ≤ 20 kg N ha-1 yr-1 started to mobilize. Understory vascular plant cover expansion was muted when deposition was ≥ 10 kg N ha-1 yr-1. Finally, modeling suggests the forest may not leach N below the rooting zone until around 50 years after chronic addition begin (25 kg N ha-1 yr-1). The modeling results are consistent with empirical data from a high exposure (~20 - 25 kg N ha-1 yr-1) jack pine site approximately 12 km west of the experimental site that has not yet experienced N leaching.
Author Keywords: Biogeochemistry, Canopy, Deposition, Jack Pine, Nitrogen, Understory
The Biology and Management of Stratiotes Aloides in the Trent River, Ontario
Invasive aquatic plants can create negative ecological, economic and social impacts when they displace local vegetation, interfere with shipping and navigation and inhibit water-based recreational activities. In 2008, the first North American occurrence of the invasive plant Stratiotes aloides (Water soldier) was identified in the Trent River, Ontario. This research measured offset photosynthesis and turion germination to determine the light compensation point (5.2-5.4m) and maximum depth of colonization (4-6m) for S. aloides propagules using in situ incubations and controlled growth experiments. The effects of spring and fall chemical (Diquat) and physical (hand raking) treatments on S. aloides biomass, local macrophyte recovery and community dynamics in the Trent River were also measured. The target of a 75% minimum reduction in S. aloides biomass was not attained using any of the treatment methods and no perceivable recovery of the local plant community was observed. Significant S. aloides regrowth was recorded for both treatment methods regardless of application timing.
Author Keywords: herbicide, invasive species, macrophyte, photosynthesis, propagule
The impact of selection harvesting on soil properties and understory vegetation in canopy gaps and skid roads in central Ontario
Tree harvesting alters nutrient cycling and removes nutrients held in biomass, and as a result nutrient availability may be reduced, particularly in naturally oligotrophic ecosystems. Selection harvesting is a silvicultural technique limited to tolerant hardwood forests where individual or small groups of trees are removed creating a "gap" in the forest canopy. In order for harvesting machinery to gain access to these individual trees, trees are felled to create pathways, known as skid roads. The objective of this study was to characterize differences in soil chemical and physical properties in gaps, skid roads and uncut areas following selection harvesting in central Ontario as well as documenting differences in the understory vegetation community and sugar maple (Acer saccharum) seedlings chemical composition post harvest. First year seedlings were collected for elemental analysis from unharvested areas, canopy gaps, and skid roads in 2014, eight months after harvesting. In 2015, first and second year sugar maple seedlings were collected. Soil bulk density and water infiltration were measured in the three areas of the catchment as well as soil moisture, organic matter content, exchangeable base cations, and net nitrification. Seedlings in the disturbed sites had lower concentrations of Mg, K, P, and N compared with unharvested sites and soil nitrification was significantly lower in the skid roads. Water infiltration rates in the gap and skid roads were slower than the control and concentrations of metals (e.g. Fe, Al, Ca) and litter mass increased in litter bags deployed over 335 days, likely reflecting an increase in soil erosion in the skid roads. Understory vegetation was markedly different amongst sites, particularly the dominance of Carex spp. in the skid roads. The sustainability of industrial logging is dependent on successful tree regeneration, however, increased soil compaction, establishment and growth of grasses and shrubs, as well as low nutrient concentrations in seedlings may ultimately restrict forest succession.
Author Keywords: Canadian Shield, nitrification, selection harvesting, soil compaction, sugar maple seedling, understory vegetation
Distribution of Cluster Fly Species (Pollenia, spp. Diptera: Calliphoridae) Across Canada Including Range Extensions and First Provincial Records
This thesis looks at the genus Pollenia: historically where they were first introduced into Canada and spatially, where they are found now. This project involved me identifying 2211 files, sorted from the 3 years of field specimens obtained in 2011, 2012, 2013. P. pediculata was the most abundant and widespread, yielding 1272 specimens out of 2211, and it was found in all provinces sampled. The previous understanding of all Pollenia specimens as being P. rudis appears to be incorrect both in terms of actual number of species – which is known – and how prevalent it is. P. rudis comprised only 20% of the entire collection. The least common was P. griseotomentosa, occurring as 45 of 2211, or 2%.
I found new eight first provincial records: four species in Alberta (P. angustigena, P. labialis, P. rudis, P. vagabunda) , one species for Saskatchewan (P. pediculata), two for New Brunswick (P. griseotomentosa, P. labialis), and one for Nova Scotia (P. labialis). P. labialis was new to three provinces, the other species to one province each.
Author Keywords: Calliphoridae, Canada, Cluster Fly, Distribution, Pollenia, Provincial Records
Nitrogen Retention of Terricolous Lichens in a Jack Pine Forest in Northern Alberta
The Athabasca Oil Sands in Alberta, Canada is one of the largest point sources emitters of NOx in Canada and there
are concerns that elevated nitrogen (N) deposition will lead to widespread eutrophication impacts, including altered
species composition, similar to what has occurred in several parts of Europe. Atmospheric deposition rates as high as
25 kg N ha-1 yr-1 have been measured close to the industrial center. The role of the forest floor in regulating these
potential eutrophication effects was investigated following a 5-year enrichment study in which N was applied as
NH4NO3 above the canopy of a jack pine (Pinus banksiana Lamb) stand in northern Alberta close to Fort McMurray
at dosages ranging from 5 – 25 kg N ha-1 yr-1 in addition to background deposition of 2 kg N ha-1 yr-1. Chemical
analysis of lichen mats revealed that apical (upper) lichen tissue N concentration increased with treatment, as did the
necrotic tissue. When expressed as a pool, the fibric-humic (FH) material held the largest quantity of N across all
treatments due to its relatively large mass. Soil net N mineralization and net nitrification rates did not differ among N
inputs after five years of application. A 15N tracer applied to the forest floor showed that N is initially absorbed by the
apical lichen, FH material, and the foliage of the vascular plant Vaccinium myrtilloides in particular. After 2 years,
the FH 15N pool size was elevated and all other measured pools were depleted, indicating a slow transfer of N to the
FH material. Applied 15N was not detectable in mineral soil. The microbial functional gene ammonia monooxygenase
(amoA) was undetectable using PCR screening of mineral soil microbial communities in all treatments, and broad
fungal/bacterial qPCR assays revealed a weak treatment effect on fungal/bacterial ratios in mineral soil. This work
suggests that terricolous lichen mats, which form the majority of ground cover in upland jack pine systems, have a
large capacity to effectively retain elevated N deposition via the formation of stable humus.
Author Keywords: Biogeochemistry, Boreal Ecology, Lichen, Nitrogen Enrichment, Oil Sands
Moss Biomonitoring of Trace Element Deposition in Northwestern British Columbia, Canada
Atmospheric pollutant deposition poses a risk to ecosystem health; therefore, monitoring the spatial and temporal trends of deposition is integral to environmental sustainability. Although moss biomonitoring is a common method to monitor various pollutants in Europe, offering a cost-effective approach compared to traditional methods of monitoring, it is rarely used in Canada. The focus of this study was a spatial assessment of trace element deposition across a region with a known large-point source of emissions using the moss biomonitoring method. Moss tissues presented strong correlations with modelled deposition in the region, suggesting mosses are a valuable biomonitoring tool of trace element deposition, especially in regions dominated by large-point emission sources. Additionally, a moss species endemic to Canada was compared to commonly used moss species with results indicating this species (Isothecium stoloniferum) can be used reliably as a biomonitor. Moss biomonitoring is recommended as a compliment to fill in spatial gaps in current monitoring networks across the country.
Author Keywords: biomonitoring, bryophytes, Hylocomium splendens, moss, Pleurozium schreberi, trace elements