Ecology

Social thermoregulation and potential for heterothermy: seasonal energy conservation strategies in flying squirrels

Type:
Names:
Creator (cre): Olson, Megan Nicole, Thesis advisor (ths): Bowman, Jeff, Thesis advisor (ths): Burness, Gary, Degree committee member (dgc): Schulte-Hostedde, Albrecht I, Degree granting institution (dgg): Trent University
Abstract:

Northern and southern flying squirrels (Glaucomys sabrinus and G. volans, respectively) are experiencing a climate change induced increase in range overlap, resulting in recent hybridization. We investigated the occurrence of heterospecific communal nesting, a potential facilitator of hybridization, and aimed to confirm the presence of torpor, a potential barrier to hybridization, in flying squirrels. In wild-caught captive squirrels, we conducted a paired nest choice experiment and found that heterospecific nesting did occur, but in a lower frequency than conspecific nesting. Ambient temperature did not affect the frequency of grouped nesting. We attempted to induce torpor in flying squirrels in a laboratory through cold exposure while measuring metabolic rate and body temperature. Strong evidence of torpor was not observed, and metabolic rate remained unchanged with season. We conclude that torpor is not a barrier to hybridization in flying squirrels, but resistance to heterospecific nesting may indicate the existence of one.

Author Keywords: heterospecific group, hybridization, northern flying squirrel, social thermoregulation, southern flying squirrel, torpor

2016

The Effects of Hydroelectric Corridors on the Distribution of Female Caribou (Rangifer tarandus) on the Island of Newfoundland

Type:
Names:
Creator (cre): Brinkmann, Beke, Thesis advisor (ths): Schaefer, James A., Degree committee member (dgc): Pond, Bruce A., Degree committee member (dgc): Nol, Erica, Degree granting institution (dgg): Trent University
Abstract:

A species of concern is caribou (Rangifer tarandus), a species in decline across most of the circumpolar North, including the island of Newfoundland. Resource exploitation across caribou ranges is projected to accelerate in the coming decades as oil extraction, roads, forest harvesting, and mining encroach upon their habitat. Hydroelectric corridors, in particular, are anticipated to expand significantly. The effects of these linear developments on caribou habitat remain unclear. I capitalized on an existing dataset of nearly 700 radio‐tracked female caribou, 1980‐2011, to determine the long‐term effects of hydroelectric corridors on their seasonal distributions. Using an island-wide landcover map, I tested for preference or avoidance hydroelectric corridors in each of 4 seasons using the Euclidean Distance habitat selection technique at the extent of the population ranges (broad scale) for each decade (1980s, 1990s, 2000s). I also examined the distribution of caribou ≤10 km and ≤20 km from corridors (narrow scale) for five herds.

At the broad scale, the response was highly variable. Female caribou were most likely to avoid corridors during the 1980s, but they often exhibited little aversion, even preference for corridors, particularly in the 1990s and 2000s. Hydroelectric corridors, therefore, did not appear to be limiting at this scale. I surmise that these long-term shifts reflect the heightened density-dependent food limitation for Newfoundland caribou. At the narrow scale, avoidance of corridors was common – typically, a 50% reduction in use within 2-5 km of the corridor. Consistent with the broad scale, caribou exhibited the strongest tendency for avoidance in the 1980s compared to subsequent decades.

Understanding space-use remains central to the study of caribou ecology. Hydroelectric lines in Newfoundland tended to coincide with other anthropogenic features. Cumulative effects must be considered to understand the full range of effects by human developments on caribou.

Author Keywords: Caribou, distribution, habitat, hydroelectric, Newfoundland, Rangifer tarandus

2016

Sex-Specific Graphs: Implication of Partitioning Population-Based Landscape Genetic analysis into Sex Components

Type:
Names:
Creator (cre): Bertrand, Philip, Thesis advisor (ths): Wilson, Paul J., Thesis advisor (ths): Manseau, Micheline, Degree committee member (dgc): Bowman, Jeff, Degree granting institution (dgg): Trent University
Abstract:

Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life historical traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have investigated the potential effect of sex-specific functional connectivity on genetic structure. The recent uses of Graph Theory in landscape genetics have demonstrated network capacities to describe complex system behaviors where network topology intuitively represents genetic interaction among sub-units. By implementing a sex-specific network approach, our results suggest that Sex-Specific Graphs (SSG) are sensitive to differential male and female dispersal dynamics of a fisher (Martes pennanti) metapopulation in southern Ontario. Our analyses based on SSG topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population-level, could be partitioned among sex-specific strata. We found that female connectivity was negatively affected by snow depth, while being neutral for males. Our findings underlined the potential of conducting sex-specific analysis by identifying landscape elements that promotes or impedes functional connectivity of wildlife populations, which sometimes remains cryptic when studied at the population level. We propose that SSG approach would be applicable to other vagile species where differential sex-specific processes are expected to occur.

Author Keywords: genetic structure, Landscape Genetics, Martes pennanti, Population Graph, sex-biased dispersal, Sex-Specific Graphs

2015

Elemental Variation in Daphnia: Nutritional, Genetic, and Environmental Factors

Type:
Names:
Creator (cre): Prater, Clay, Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Murray, Dennis, Degree committee member (dgc): Wilson, Chris, Degree granting institution (dgg): Trent University
Abstract:

Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress.

Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton

2016

Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)

Type:
Names:
Creator (cre): Hoffman, Jordan Michael, Thesis advisor (ths): White, Bradley N, Degree committee member (dgc): Nocera, Joe, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct.

Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics

2015

Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)

Type:
Names:
Creator (cre): McKay, Michelle Meredith, Thesis advisor (ths): Wilson, Paul J, Thesis advisor (ths): Bowman, Jeff, Degree committee member (dgc): Freeland, Joanna R, Degree granting institution (dgg): Trent University
Abstract:

The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism's ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes.

Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion

2016

Long-Term Population Dynamics of an Unexploited Lacustrine Brook Trout (Salvelinus fontinalis) Population

Type:
Names:
Creator (cre): Brown, Erin Nicole Danielle Pallette, Thesis advisor (ths): Ridgway, Mark S, Thesis advisor (ths): Wilson, Chris C, Degree granting institution (dgg): Trent University
Abstract:

Long-term studies of demographic processes such as survival and abundance conducted in unexploited systems provide unique insight into the natural population ecology of fish, but are rarely available. I used historical tagging records of a sanctuary population of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario to investigate long-term population dynamics in an unexploited population. Adult brook trout in Mykiss Lake (23.5ha) were surveyed and tagged biannually (May and October) between 1990 and 2004. Open-population capture-mark-recapture models were used to test the importance of time, size, sex and season on estimates of apparent survival and abundance. Seasonal population growth and recruitment were estimated and compared with large-scale climate indices. Time-dependent survival and abundance estimates fluctuated, with distinct periods of increase. Population growth and recruitment were positively correlated with summer NAO and ENSO values, whereas survival was negatively correlated. Seasonally, larger individuals experienced higher apparent survival during winter and decreased survival during summer. These findings provide valuable insights into the natural demography of unexploited brook trout populations, and should help inform sustainable management of inland fisheries.

Author Keywords: capture-mark-recapture, long-term, population dynamics, Salvelinus fontinalis, seasonal variation, survival

2016

Stopover Movement Patterns by Blackpoll and Canada Warblers Across Southeastern Canada During Fall Migration: An Automated Radio-Telemetry Study

Type:
Names:
Creator (cre): Parada Isada, Alain, Thesis advisor (ths): Nol, Erica, Thesis advisor (ths): Taylor, Phil D, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Stopover ecology is a topic that surges in relevancy as choices made by migrants during stationary periods (stopover sites) may not only have important individuals' fitness consequences but also can affect population dynamics. I used MOTUS automated telemetry array to study fall stopover duration of Blackpoll Warbler (BLPW) and departure decisions of BLPW and Canada Warbler (CAWA) in relation to various predictors. I affixed radio-transmitters on 55 BLPWs and 32 CAWAs at two banding stations in Ontario in September-October 2014-2015. Radio-tagged individuals were tracked through the MOTUS network across southeastern Canada. I developed models relating age class, fat score, Julian date and stopover movement types to Blackpolls' stopover duration. I also examined whether there were species-related differences of wind selectivity when resuming migration. No explanatory variable significantly influenced BLPW's stopover duration. Both species tended to depart under increased tailwind assistance, but with no difference in the effect of wind conditions between the two species. This study provides further evidence supporting the relevance of local wind conditions as a key factor affecting the departure likelihood, especially when migrating birds face an ecological barrier.

Author Keywords: Cardellina canadensis, departure decisions, minimum stopover length, MOTUS, overland fall migration, Setophaga striata

2017

MOVEMENT PARAMETERS AND SPACE USE FOR THE SOUTHERN HUDSON BAY POLAR BEAR SUBPOPULATION IN THE FACE OF A CHANGING CLIMATE

Type:
Names:
Creator (cre): Middel, Kevin Robert, Thesis advisor (ths): Obbard, Martyn E, Degree committee member (dgc): Pond, Bruce A, Degree committee member (dgc): Schaefer, James A, Degree granting institution (dgg): Trent University
Abstract:

Changes to the Arctic and sub-Arctic climate are becoming increasingly evident as it warms faster than other areas of the globe, supporting evidence that predictions of future warming will be amplified due to positive feedback mechanisms. The Southern Hudson Bay polar bear (Ursus maritimus) subpopulation is one of the most southerly subpopulations in the world, putting it at increased risk due to effects of climate change. Whereas many other subpopulations have been the subject of intense research and monitoring, little research has been completed detailing the movement behaviour and space use of bears within Southern Hudson Bay. I used detailed movement data collected on female polar bears to establish a baseline of movement information for this subpopulation to which future work can be compared and effects of climate change can be assessed I evaluated the use of core areas during critical periods of the year (breeding and ice breakup) and evaluated common space use as a means of assessing site fidelity during the breeding season. Movement rates and home range sizes were comparable to those of the neighbouring Western Hudson Bay subpopulation. I also found evidence of increased occurrences of long distance, late fall movements along the coast to the northwest, presumably to gain earlier access to first ice. Though space use analysis did not reveal evidence of site fidelity to specific breeding areas in Hudson Bay, I found that core use areas are at risk of substantially shortened ice duration (x¯ =76 days shorter) using projected ice data based on the high emissions A2 climate change scenario.

Author Keywords: climate change, Hudson Bay, movement, polar bear, sea ice, utilization distribution

2014

Habitat use and community structure of grassland birds in southern Ontario agro-ecosystems.

Type:
Names:
Creator (cre): McGuire, Sarah Lauren, Thesis advisor (ths): Nocera, Joe J., Degree committee member (dgc): Schaefer, Jim, Degree committee member (dgc): Burke, Dawn, Degree granting institution (dgg): Trent University
Abstract:

Most grassland bird populations are in decline, so it is becoming increasingly important to understand how they use agricultural field types and form their communities. I performed point counts in cultural meadow, intensive agriculture, and non-intensive agriculture areas in 2011 and 2012. Generalized linear models were used to determine the habitat relationships of six focal species. I found that non-intensive agriculture was used most often and intensive agriculture was often avoided, but there were exceptions which indicate habitat use can be species-specific. I determined in which habitats competition was likely occurring and which species pairs were competing in 2011. In 2012, I experimentally tested these relationships by introducing artificial competitors onto sites. By comparing presence-absence data from 2011 to 2012, I found evidence of habitat-mediated interspecific and conspecific attraction involving Bobolink and Grasshopper Sparrow. This research contributes to the current understanding of grassland bird community ecology and conservation.

Author Keywords: agriculture, BACI, community ecology, habitat use, species at risk, species interactions

2014